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Abstract
The cannabinoid chemistry is currently being addressed in preclinical approaches as a viable therapeutic alternative for the
management of a wide range of signs, symptoms, and some biochemical hallmarks of many neurological pathologies (such as
neuroinflammation and neurodegeneration). This clinical orientation is grounded on the consistent promissory profile that
cannabinoid compounds have shown, and the great necessity of feasible options to undergo such disorders. Even though at
early research stages, metabolic disorders are starting to rise as potential targets of cannabinoid alternatives; approaches in this
term could, in turn, aim to modulate the endocannabinoid response for therapeutic purposes. This review recalls the pathologic
scenarios endured in the course of neurological diseases of high occurrence and the most typical metabolic disorders, while
discussing the neuroprotective mechanisms of cannabinoid agonists in the central nervous system, and the potential targets of the
endocannabinoid system and metabolic disorders.
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Introduction

Neurodegenerative diseases, such as Alzheimer disease (AD),

Parkinson disease (PD), and multiple sclerosis (MS), are few

examples of an enriched acquisition of disorders that have

been studied for several decades. From its very first descrip-

tion, our comprehension of the intrinsic mechanisms behind

such conditions has experienced substantial growth. Such a

progress involves many overlapping mechanisms, including

deposition and aggregation of misfolded proteins, resulting in

progressive degeneration of nerve cells. Undoubtedly, such a

setup has presented a unique opportunity for the alternative

proposals of pathophysiological mechanisms and drug targets

as well as novel pharmacological strategies in the generation

of new drugs.

Frequently Expressed Neurodegenerative
Disorders

As revised elsewhere, consistent pathological hallmarks of

AD comprise the extracellular deposits of b-amyloid peptide,

which is associated with cell death, and the consequent

behavioral, memory, and cognitive alterations. Additionally,

the formation of intracellular neurofibrillary tangles of tau

protein constitutes a second distinctive characteristic of AD,

and such a process is associated with detriment in neuronal

communication. Furthermore, the role of activated microglia

at the senile plaque’s fringe has been related with the antiox-

idant defense in AD brains.1–5 On the other hand, PD consti-

tutes a second major example of the most notorious
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neurodegenerative diseases, and its characteristic motor and

nonmotor signs are the result of a progressive loss of dopa-

minergic neurons residing principally in the substantia nigra
pars compacta and their endings at the striatum.6,7 Moreover,

the pathological processes associated with the disease encom-

pass the alteration of non-dopaminergic neurotransmitters and

associated events,8 and more importantly, dopaminergic

metabolism as an intracellular source of reactive oxygen spe-

cies (ROS). To complete the brief count, MS is a demyelinat-

ing disorder of the central nervous system (CNS) apparently

caused by particular genotypes and environmental stimuli; it

often stands out for its motor exacerbation manifestations, or

“relapses,” which are followed by “remissions.” As known,

MS leads to immune attack to the CNS and severe damage to

oligodendrocytes—the glial cells that form myelin—as well

as progressive inflammation throughout the brain and

meninges. Therefore, the progression of the disease results

in neuronal dysfunction and irreversible disability.9–12 Hence,

countless efforts are being concentrated into the research and

comprehension of these and many more neurodegenerative

diseases, as therapeutics still face important challenges rang-

ing from timely and accurate diagnoses to the generation of

novel and effective therapies. For this reason, several patho-

genic mechanisms are continuously being suggested and

include mostly oxidative stress, local/generalized neuroin-

flammation, mitochondrial energy depletion, and so on, and

the current ideology contemplates these examples, either run-

ning simultaneously or converging through time, as a feasible

mechanism that leads to the progression observed typically in

neurodegenerative diseases.6,13

Organic Acidurias

Generically, organic acidurias (OAs) have been described as a

family of inheritable disorders due to defects in metabolic path-

ways of amino acid degradation. These disorders are character-

ized by the tissue accumulation and high urinary excretion of

organic acids, including glutaric acid (GA), 3-hydroxyglutaric

acid (3-OHGA), methylglutaric acid (MGA), methylmalonic

acid (MMA), propionic acid (PA), and so on, with special

deleterious consequences to the brain.14 Indeed, OAs are

among the major causes of brain damage and other alterations

in children.15–18 In high-risk groups, the frequency of OAs is

much higher than in the general population.19 Features such as

age of onset and the severity of illness seem to depend on the

accumulated levels of specific toxic metabolites. Some envi-

ronmental factors, including metabolic distress and infections,

are known to accelerate the severity of the clinical manifesta-

tions of these diseases, probably because of the dramatic

increase in the accumulating metabolites.

Diagnosis of OA

Clinical characteristics in patients with OAs include

mental retardation, seizures, coma, lethargy, vomiting, hypo-

tonia, hepatomegaly, and cardiac malfunction. An early and

accurate diagnosis (1-3 days) helps to prevent chronic events,

such as mental retardation and physical dysfunction.20 Two

common laboratory features of OAs are hyperammonemia and

metabolic acidosis. Other common biochemical events include

hypoglycemia and ketonuria.

The OAs exclusively or predominantly affecting the brain

are also known as “cerebral” OAs and are characterized by

severe neurological manifestations.18 Increased amounts of

organic acids in the urine of patients with OAs are crucial

for an accurate diagnosis. Current analytical methods to

achieve diagnosis or OAs are gas chromatography/mass spec-

trometry that in some cases can be improved by tandem mass

spectrometry, enzyme assays, and DNA analysis. Proton

nuclear magnetic resonance and dinitrophenyl hydrazine

tests can be also employed, although they are not conclusive

of diagnosis.20

Treatment

With a timely and accurate diagnosis, some OAs can be

effectively treated, whereas many others do not reach a real

treatment. Nutritional therapy provides essential nutrients

to preserve and recover physical and mental conditions,21

restricting the amino acids that generate the accumulating

organic acids. Therefore, while alternative amino acid–

based therapies constitute a constant source of energy and

nutrients that can promote anabolism and growth,20 dietary

precursors of GA (mainly lysine) have to be avoided in

glutaric aciduria type I (GA-I).22 Since carnitine deficiency

is also common in these disorders and helps to increase

the excretion of organic acids, L-carnitine is usually sup-

plemented.23 Acute crises in OAs are generally treated

with dialysis, correction of electrolyte imbalances and

acidosis, brain perfusion, and control of oxygen and glucose

levels.20 Glycine and carnitine are also given as detoxifying

treatments. Classical OAs inherited as autosomal recessive

pattern include GA-I, PAcidemia, MMAcidemia, among

others.

Glutaric Aciduria Type I

The GA-I is a cerebral OA caused by a deficiency of glutaryl-

CoA dehydrogenase (McKusick 23167; OMIM # 231670).

Untreated patients show increased concentrations of GA

(500-5000 μmol/L) and 3-OHGA (40-200 μmol/L) in body

fluids and tissues, especially in the CNS.24,25 Frontotemporal

cortical atrophy at birth, progressive spongy formation, leu-

koencephalopathy, and acute damage of the caudate/putamen,

are characteristically seen in this disorder during encephalo-

pathy, that occur between 6 months and 4 years of age.26,27

Although the pathogenic mechanisms responsible for neuro-

logical sequelae in GA-I are not fully established, several in

vitro and in vivo studies suggest that the accumulating organic

acids induce excitotoxicity, oxidative stress, and energy meta-

bolism impairment.28–32
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Methylmalonic Acidemia and Propionic
Acidemia

Methylmalonic acidemia (MMAcidemia) and propionic acid-

emia (PAcidemia) are caused by a severe deficiency of

methylmalonyl-CoA mutase (EC 5.4.99.2) and propionyl-

CoA carboxylase activities (EC 6.4.1.3) and are biochemically

characterized by predominant blood accumulation of MM

(1-2.5 mmol/L) and PA (5 mmol/L), respectively. Clinical

presentation of both OAs is similar and includes lethargy, psy-

chomotor delay/mental retardation, focal and generalized con-

vulsions, vomiting, dehydration, hepatomegaly, hypotonia, and

encephalopathy, all leading to coma and death.33 Cerebral

magnetic resonance imaging shows delayed myelination

(progressive cortical atrophy) and hypodensity of the basal

ganglia.34,35 It has been suggested that brain injury due to

MMAcidemia and PAcidemia is mainly related with the toxic

effects exerted by the accumulating metabolites. In this con-

text, it has been demonstrated that MMA causes impairment of

brain mitochondrial energy metabolism, as well as alterations

in the redox status and glutamatergic neurotransmission.36–38

Neurotoxic effects of PA have also been reported in rat brain

and human preparations.39–47

The Endocannabinoid System: Overview

The endocannabinoid system (ECS) has been known and

increasingly recognized for about 2 decades. Given the emer-

ging knowledge achieved throughout the history of Cannabis

use, together with the evolving hypotheses of the overall role of

cannabinoid (CB) circuitry in the human body, the ECS is now

addressed as a rich matrix of receptors, ligands, and associated

molecules involved in many physiological and pathological

conditions.48–52 The ECS recruits a mechanism of intercellular

communications that would execute modulatory actions in

brain and peripheral systems; examples of physiological

actions in which CB signaling might be associated include

mood regulation (depression and anxiety),53 control of intest-

inal motility,52 urinary tract physiology,54 vasorelaxation of

healthy vasculature,55 interference of the production of proin-

flammatory cytokines, and probably other immune functional

activities as well as the maintenance of the immune homeo-

static balance.56 In addition, the role of CB signaling has been

associated with crucial functions throughout the CNS develop-

ment (both prenatal and postnatal),50 which might play a rele-

vant role under pathological contexts.

The ECS begins with the CB receptors 1 and 2 (CB1 and

CB2, respectively), which are highly distributed within the

CNS as well as in peripheral tissues. Both receptors belong

to the superfamily of transmembrane-domain Guanosine tri-

phosphate (GTP)-binding protein-coupled receptors, and it is

known that they are associated with numerous cellular pro-

cesses, such as the inhibition of synaptic transmission and the

inhibition of the adenylate cyclase activity, resulting in the

regulation of neurotransmitter release through its activation.50

Opposite to the recurring hydrophilic cations associated with

the Class A-G protein-coupled receptors’ group, its ligands

have a lipophilic nature derived from the arachidonic

acid,48,53 such as fatty acid ethanolamides or glycerols found

in countless CBs of endogenous nature.49 As such, CB1 recep-

tors are vastly expressed in the CNS, comparing in density

with that of g-aminobutyric acid or even glutamate-gated ion

channels50; in this form, areas such as basal ganglia (caudate,

putamen, globus pallidus, substantia nigra, etc), cerebellum,

and hippocampus display great number of receptors and con-

sequently a higher endocannabinoid activity.49 On the other

hand, CB2 subtype is highly expressed in the overall immune

system, with great density in B lymphocytes, but quantita-

tively decreasing in natural killer cells, microglia, and T lym-

phocytes.56 Given such diverse distribution, the role of CB1

receptors is mainly associated with pain, inflammation, and

many other responses, while CB2 receptors might have the

potential as immunomodulators in various immune processes.

As expected, these receptors possess an overall fixed structure

of an extracellular N-terminus domain, 7 transmembrane

a-helixes, and an intracellular C-terminus domain. Under the

circumstances of ongoing immune processes, receptor activa-

tion stimulates the interaction with G proteins and ultimately

upholds the Guanosine diphosphate/GTP exchange and fur-

ther dissociation of the corresponding subunits.49

Following the definition of the receptors, several molecules

bind to CB1 and CB2 receptors and constitute ligands of endo-

genous or synthetic nature. Research efforts have led to the

recognition and characterization of many molecules, and such

progress has yielded a vast number of studies aiming to explore

its potential under pathological defies. To date, 2 endogenous

ligands of the CB system have been a matter of great interest:

anandamide (AEA) and 2-arachidonylglycerol (2-AG). Both

constitute elements of biological and physiological relevance

under many circumstances, especially when considering that

both are associated with the neurotransmitter-release inhibition

through the adenylate cyclase inhibition.57 Besides these mole-

cules, other examples of endogenous ligands—and some data

supporting its participation in significant biochemical events—

include 2-arachidonylglycerol ether (noladin ether),58–61

N-arachidonyl-dopamine,62 virodhamine,63 and so on. On the

other hand, the synthetic CB counterparts are frequently clas-

sified for its study. Such classification led in 2002 to a group of

4 components that remains valid nowadays: classic CBs (HU-

210,64 nabilone,65,66 cannabidiol,67,68 and other); nonclassic

CBs (CP-47,497,69,70 CP-55,244,71 and CP-55,94069),

aminoalkylindoles (R-(þ)-WIN 55,212-2,72 and JWH-01573),

and eicosanoids (AEA74 as the most notable as well as metha-

nandamide75 and arachidonoyl-2-chloroethylamide76) to name

a few, that account as synthetic eicosanoids.77

Besides these main components, the ECS is enriched by a

number of synthesis and degrading enzymes, transporter mole-

cules, and minor intermediates that complete the arrangement.

In this form, many molecular mechanisms take place in order to

execute CB receptor signaling in anterograde and retrograde

directions, as well as the corresponding cycles of synthesis,

transport, and inactivation/degradation of CB agonists, which
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ultimately represent processes that are not entirely understood

but yet remain enthralling and promissory.

Possible Neuroprotective Mechanisms of CBs
in the Brain

The ECS was first recognized around the 80s, and emerging

data have confirmed its relevance and intricate association with

brain physiology and pathology ever since. As discussed pre-

viously, circuitry hierarchy of CB is settled with the CB1

(widely expressed in the CNS) and CB2 (both CNS and per-

iphery) receptors, and the differential distribution points out the

therapeutic potential of the ECS in neurological diseases.

Although the constitutive expression of the receptors in the

CNS plays a vital and consistent role in physiology, the indu-

cible expression can also be provoked with prior inflammatory

insult. Currently, the connection between the ECS and neuro-

logical diseases is not entirely understood; nevertheless,

copious information proposes ECS’ hypofunction and overall

dysregulation as the cause of some notorious symptoms of

neurological diseases, especially when considering its neuro-

protective and prohomeostatic functions, which drives the sys-

tem as a whole to a potential link to mood and anxiety

alterations,78,79 major motor disorders such as PD or HD,80,81

and other pathologies (Figure 1). Hence, most therapeutic

approaches bet on pharmacological methodologies that alter

the CB pathway or explore the endogenous increase in specific

CB compounds that trigger desired responses.

As mentioned previously, CBs exert its biological func-

tions through the activation of CB1 and CB2 receptors. The

2 most noticeable CBs of endogenous nature include the AEA

and 2-AG but also include diacylglycerol, diacylglycerol

lipase, fatty acid amidehydrolase (FAAH), monoacylglycerol

lipase, N-acylphosphatidylethanolamine, and so on. More-

over, AEA and 2-AG represent endogenous ligands released

“on demand,” that subsequently suffer a hydrolysis process by

the FAAH; consequently, the reduction in the normal levels of

FAAH is associated with AEA concentration, which ulti-

mately impacts the inhibitory effect of nociceptors.82 Like-

wise, the neuroprotective assets of some endocannabinoids

were first drawn from findings confirming that synthesis of

AEA or 2-AG is Ca2þ influx dependent, implying therefore

that endogenous CB tone would be determined as a response

to intracellular calcium levels.2 In this form, there is a precise

distribution of CBs within the CNS and peripheral tissues, and

together with the density of receptors and correlated mole-

cules, the postactivation responses of ECS suggest the neuro-

protective role of the CB matrix.

The state of knowledge of CB circuitry, along with its con-

nection with pathological processes, discloses a great number

of events that occur as part of the onset and progression of

disease under many scenarios. As expected, the description

of the involvement of CB signaling in pathological scenarios

is currently engaged with the assessment of experimental data.

Neurological diseases face challenging scenarios consisting

essentially of lack of effectiveness of present pharmacological

alternatives and limited emerging therapeutic proposals. Thus,

the close relationship of these disorders and the ECS has

directed attention to the exploration of CB chemistry to assess

its antihyperkinetic, anti-inflammatory, and neuroprotective

qualities through alternatives such as the effective expression

of CBs, enhancement of CB synthesis, and so on, further

leading to the control of motor activity and some other pro-

cesses.83,84 As a result, there is a special interest in the study of

the risks and benefits implied in the use of CB-derived

compounds in neurological pathology; in fact, motor-related

disorders, neurodegenerative diseases, and some low-

incidence pathologies show improvement under

CB-administration schemes evidenced by the reduction of det-

rimental processes, such as excitotoxicity, oxidative stress, and

inflammation.57,81 This setup qualifies diseases from degenera-

tive contexts such as AD, PD, and HD as ideal targets for

experimental approaches but also reflects in disorders of low

incidence—and rising awareness—such as OAs (GA-I, PAci-

demia, MMAcidemia, etc).85

Particular effects evoked after CB activation have attracted

interest due to its advantageous applications. One of the most

prominent is the antinociceptive response produced by CBs,

which are mainly exerted through CB1 receptors.86,87 Further-

more, such effects are taken to a new high when proposing the

Figure 1. Alterations of the endocannabinoid system under patholo-
gical conditions. The image on the left is a conceptual representation
of physiological conditions of pre- and postsynaptic neurons, with
proportioned and functional CB1 (black) and CB2 (textured) recep-
tors, transporters, and endogenous molecules such as anandamide
(red dots), 2-arachidonoylglycerol (light yellow dots) and glutamate
(purple dots). Conversely, the right image shows typical alterations of
the endocannabinoid arrangement in pathological conditions, with
fewer CB1 and CB2 receptors, decrease in the cannabinoid tone of
anandamide and 2-arachidonoylglycerol, increase in glutamate levels,
as well as the presence of glutaric (pink dots) and quinolinic (orange
small dots) acids, 2 intermediates of metabolic pathways that may
accumulate under pathological conditions and exert toxic effects.
CB1 indicates cannabinoid receptor 1; CB2, cannabinoid receptor 2.

4 Journal of Inborn Errors of Metabolism & Screening



neuroprotective strategies of the CB elements in the brain. As

known, the elucidation of the mechanisms that underlie the

pathogenesis of neurological diseases constitutes exceptional

dilemmas that therapeutics need to address. For example, a

promissory finding applicable in neurodegenerative contexts

involves the hypotheses in which cell survival, specifically

neuronal type, is closely connected to the ECS, given that

neuronal insult triggers repair mechanisms and endogenous

production of CBs, such as AEA.88 In fact, specific detrimental

proteins present in neurodegenerative diseases (ie, Ab) evoke

localized and eventually general neuronal degeneration, which

is also manifested in function impairment; then again, this

deleterious conditions are reported to induce the production

of endocannabinoids such as 2-AG, so that its neuroprotective

qualities can be exerted.89

Moreover, the ECS experiences downregulation of CBs as

part of the hallmarks of some neurological diseases on early

stages (usually previous to diagnosis), whereas advanced

phases exhibit important receptor loss in the basal ganglia; in

this form, both traits are consistent with initial hypokinetic

manifestations versus advanced hyperkinetic symptoms

experienced by patients in diseases such as PD or HD.90,91 In

addition, neurological pathologies of different nature show

changes in the CB chemistry, as the alteration of receptors in

purinergic signaling is known to be related to the decay of

endocannabinoid level, thus reducing its protective qualities.4

Potential Therapeutic Targets of the ECS in
Neurodegenerative Disorders and OAs:
Experimental Evidence

The aforementioned findings are currently under study with a

therapeutic orientation, as the status of many neurological dis-

eases highlights the relevance of the ECS in these pathologies.

Research has led so far to great amount of information in regard

to the ECS involvement in common neurological diseases such

as AD, PD, MS, to name a few. Aside of the pathophysiological

hallmark of AD, which has been addressed extensively, our

knowledge of the participation of endocannabinoid elements

has settled in several notions: Hippocampus expresses several

subpopulations of CB1r, all of which contribute actively to the

memory processes that suffer the deleterious effects during the

neurodegenerative course of the disease. In fact, published

works have stated the connection of neuronal cell survival and

the CB chemistry. Such statements are possible given that such

circuitry enables repair mechanisms to avoid or diminish oxi-

dative injury or apoptotic events and could, in any given time,

reduce the negative effects of molecules such as Ab in AD.

Moreover, the characteristic cognitive alterations due to

hippocampal dent might be modulated by the ECS through

anti-inflammatory and antioxidant means—and overall neuro-

protective mechanisms—in this form, several experimental

strategies explored the scopes and limitations of the ECS under

the pathological hallmarks of AD and continue to provide valu-

able information in these regards.88,89,92 Aside of the classical

signs of AD, the overactivation of the N-methyl-D-aspartate

receptor (NMDAr) and the consequent dysregulation of Ca2þ

influx converge in the degenerative course of the disease.

Accordingly, available information strongly suggests that the

activation of CB1r could trigger protective actions along with

the inhibition of excessive Ca2þ entry; such approaches

propose hitherto the upregulation of the most prominent

endogenous CBs as well as the reduction in the excitotoxic

events resulting from the excessive Ca2þ influx. Moreover, the

synthesis of AEA and 2-AG is known to be Ca2þ dependent,

therefore rendering its constitutive concentration, as well as the

CB response, as a factor directly related to the Ca2þ load.2,93

Progress has also been achieved in regard to some other

neurodegenerative disorders. Notorious motor symptoms (dys-

kinesias, bradykinesia, tremor, rigidity, etc) accompany the

development of PD; its disabling potential reduces dramati-

cally the quality of life of the people facing the condition,

reason why such symptoms constitute a major target of new

therapies. As seen with some typical brain disorders, the ECS

endures central alterations that occur along with the numerous

degenerative processes of the disease; more precisely, early

stages of PD—often presymptomatic—are associated with

downregulation or desensitization of CB1r, which ultimately

led to oxidative stress and excitotoxic/inflammatory events,

while an upregulation of endocannabinoid agonists and recep-

tors (CB1r specifically) is attained on advanced stages due to

the influence of dopamine depletion on substantia nigra and,

consequently, the striatum.90 Under these circumstances, fre-

quent proposals imply timely administration of molecules to

inhibit the endogenous degradation of CBs in order to reduce

the classic motor symptoms of PD.94 Moreover, NMDAr

antagonists are emerging as feasible options to mediate over-

activation of such receptors, the consequent toxic events, and

the cellular damage associated with it.

Contrasting hypotheses have risen in regard to MS, a dis-

ease that deals with severe immune attack and reportedly face

a reduction in the CBs of endogenous nature as a result of the

alteration of purinergic receptors4 and, altogether, would con-

tribute to the pathologic components of MS. The increasing

awareness of CB potential has led to numerous preclinical

evaluations exploring its properties, and even some advanced

clinical studies following the same goal. As such, the

improvement in disabling symptoms, such as spasticity and

overall quality of life, might be achieved through synthetic

CBs, given that such motor symptoms seem to be CB1r

dependent95; in fact, most of the explored applications sug-

gest the administration of Cannabis derivatives to enhance

endocannabinoid signaling.96

As evident, these are examples of highly prevalent

diseases of great interest in biomedical research, and their

pathophysiological hallmarks are rather understood and studied

acutely. However relevant, the awareness of and overall prog-

ress made in metabolic disorders have not shown such growth,

and CB chemistry began to represent eventful alternatives only

recently in this matter. The exploration of the potential mod-

ulation of some elements of the ECS and specific metabolic
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disorders just started to emerge and has been addressed only

once with experimental purposes. In 2015, Colı́n-González and

colleagues85 published a synthetic approach used to evaluate

the effect of a synthetic CB on early markers of some OAs,

based on the understanding that its genesis comes with the

convergence of events such as excitotoxicity and oxidative

stress. In this form, the protective effects of WIN 55,212-2 (a

synthetic CBr agonist) were evaluated in regard to its capacity

to prevent oxidative damage, lipid peroxidation, decrease in

antioxidant defense, and mitochondrial dysfunction, all of them

being known early markers of metabolic diseases (GA, 3-

OHGA, MMA, and PA as distinctive metabolites of the most

typical metabolic disorders). The referred study led to interest-

ing findings, as WIN 55,212-2 exhibited protective effects on

markers related with GA-I and MMAcidemia, evaluated in

terms of the prevention of mitochondrial dysfunction, forma-

tion of ROS, and lipid peroxidation in rat brain synaptosomes;

the aforementioned findings support unequivocally the protec-

tive role of CBs in the toxic events present at early stages of

OAs as a novel approach to assess the modulatory potential of

CB compounds.85 By the same authors, a second effort in pub-

lishing process confirmed the effective prevention of the toxi-

city induced by 3-MGA in brain synaptosomes elicited by low

concentrations of WIN 55,212-2 when used as pretreatment

(for as long as 30 minutes and prior to toxic insult).97 Given

the lack of experimental designs involving OAs and its toxic

early metabolites, the future is headed toward the integration of

the viable CB alternatives existing at this point into proficient

experimental approaches to assess and exploit the effects of the

modulation of the CB chemistry.

Concluding Remarks

As seen, the promissory character of CBs has shown remark-

able properties that might enable the reduction in oxidative

stress and a number of neuroinflammatory markers, while

reestablishing brain homeostasis and restorative mechanisms

contribute actively. In conclusion, therapeutic approaches

adopting endocannabinoid strategies for common neurode-

generative diseases and even for a group of inherited meta-

bolic disorders known as organic acidemias, that are

characterized by severe impairment of the CNS. This

approach may undoubtedly possess incalculable potential,

and yet the necessity of additional research and conclusive

data are imperative in order to clarify its participation in the

pathological picture of such conditions.
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