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Abstract
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases
delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the
1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids
(Borganic acids^) and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic
at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the
newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-
based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have signifi-
cantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino
acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is common-
ly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological
and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes
exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs.
However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably
predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with
increasing age, even if patients are considered to be Bmetabolically stable^. This has challenged our understanding of
OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.

Keywords Organicacidurias .Methylmalonicaciduria .Propionicaciduria . Isovalericaciduria .Glutaricaciduria type1 .Clinical
phenotype . Outcome .Management . Adults

Abbreviations
CNS Central nervous system
CRF Chronic renal failure
EO Early (i.e. neonatal) disease onset
GA1 Glutaric aciduria type 1
IVA Isovaleric aciduria
LO Late disease onset (i.e. after the newborn period)
MRI Magnetic resonance imaging
MMA Isolated methylmalonic aciduria
OAD(s) Organic aciduria(s)

PA Propionic aciduria
QTc Corrected QT interval

Introduction

Organic acidurias (OADs) are a heterogeneous group of
inherited metabolic diseases most often caused by inherited
deficiency of enzymes involved in the degradation of amino
acids resulting in the accumulation of so-called Borganic
acids^, i.e. mono-, di- or tricarboxylic acids, which can be
detected in body fluids. Some organic acids and accompanying
acyl-CoA esters are thought to be toxic if they reach a critical
threshold (Sauer et al 2008). Pathophysiologic concepts include
disturbed brain energy metabolism and entrapment of dicar-
boxylic toxic metabolites in the brain compartment (Sauer
et al 2005; Sauer et al 2006; Lamp et al 2011), activation of
glutamatergic signaling (Kolker et al 2002), dysregulation of
cerebral blood flow and endothelial cell dysfunction
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(Muhlhausen et al 2006; Strauss et al 2010) in glutaric aciduria
type 1 (GA1); inhibition and impairment of glycolysis and
tricarboxylic acid cycle enzymes and respiratory chain com-
plexes (Okun et al 2002; Melo et al 2011; Tuncel et al 2015)
as well as disturbed ureagenesis due to inhibition of N-
acetylglutamate synthase in isolated methylmalonic (MMA),
propionic (PA) and isovaleric acidurias (IVA) (Coude et al
1979; Coude et al 1982; Schwab et al 2006). These
pathomechanistic concepts may explain the acute manifesta-
tions of OADs, such as acute metabolic crises in MMA, PA
and IVA as well as the acute or insidious onset of striatal dam-
age in GA1, but are insufficient to explain disease progression
and late complications.

With the exception of patients with GA1 who develop
striatal damage mostly between the age of 3–36 months
(Strauss et al 2003; Kolker et al 2006), patients with so-
called Bclassic^ OADs, i.e. MMA, PA and IVA may already
present with first life-threatening symptoms shortly after birth.
However, the age of disease onset is variable. Recent studies
report that the proportion of individuals with late disease onset
seems to be higher than initially suggested (Kolker et al
2015a, b). Furthermore, an increasing number of reports high-
light that disease progresses even in patients who have not had
any acute metabolic decompensation for years (or at all) and
who were thought to be Bmetabolically stable^ under conven-
tional metabolic therapy (Martin-Hernandez et al 2009; Fraser
and Venditti 2016).

The major aim of this review is to describe the evolv-
ing phenotypic spectrum of OADs and progression of
symptoms in adolescents and adults in the light of po-
tential consequences for long-term management. A pre-
cise understanding of the phenotypic development and
variability and identification of parameters that reliably
predict specific disease variants and late complications
are prerequisites to adapt and improve long-term man-
agement and clinical outcome and to stimulate research.

Isolated methylmalonic aciduria

Isolated methylmalonic aciduria (MMA) comprises a hetero-
geneous group of autosomal recessively inherited disorders of
propionatemetabolism. The estimated overall incidence is one
in 50,000 newborns (Baumgartner et al 2014). MMA is
caused by reduced activity of the mitochondrial enzyme
methylmalonyl-CoA mutase (EC 5.4.99.2) causing mut-type
MMA (OMIM #251000) or by defects in the synthesis of its
cofactor adenosylcobalamin (cblA-type MMA, MIM
#251100; cblB-type MMA, MIM #251110; cblD-variant 2,
MIM #277410) (Fowler et al 2008).Methylmalonyl-CoAmu-
tase converts methylmalonyl-CoA to succinyl-CoAwithin the
final catabolic pathway of L-isoleucine, L-valine, L-methio-
nine, L-threonine, odd-chain fatty acids and the side chain of

cholesterol. MMA is biochemically characterized by accumu-
lation of methylmalonic acid and, due to activation of alterna-
tive pathways of propionate oxidation, by accumulation of
propionate, 3-hydroxypropionate and 2-methylcitrate, all de-
riving from propionyl-CoA (Fenton et al 2001).

Clinical presentation

The onset of first symptoms ranges from the neonatal period
to adulthood resulting in a subdivision of individuals with
early (EO, ≤ 28 days) and late disease onset (LO, > 28 days)
reflecting variable clinical severity (Deodato et al 2006;
Kolker et al 2015a, b). In contrast to the EO form, which is
usually associated with a severe disease course, the clinical
spectrum of the LO form is more variable ranging from life-
threatening metabolic decompensations to fluctuating or
chronic symptoms. Clinical symptoms, acute or chronic,
may mimic other conditions involving the central nervous
system (CNS), gastrointestinal system, hematological system,
heart and kidneys (Baumgartner et al 2014). In both onset
types, patients suffer a life-long risk of recurrent metabolic
decompensations that are often precipitated by catabolism,
infectious diseases or excessive protein intake (Baumgartner
et al 2014). Of note, some individuals with MMA may not
develop a single metabolic decompensation during their
whole life but present with feeding difficulties, cognitive dis-
ability, and dysfunction of heart and kidneys (Kolker et al
2015a, b).

Long-term complications

Since long-term survival has improved, progressive multiple
organ dysfunction resembling disorders of oxidative phosphor-
ylation is becomingmore andmore evident, even in individuals
assumed to be Bmetabolically stable^ (Dionisi-Vici et al 2006;
Horster et al 2007; Kolker et al 2015a, b). Chronic inhibition of
pyruvate dehydrogenase complex, tricarboxylic acid cycle en-
zymes and respiratory chain complexes induced by synergisti-
cally acting mitochondrial toxins, especially propionyl-CoA
and 2-methylcitric acid, is thought to induce chronic impair-
ment of mitochondrial energy metabolism, altered auto
−/mitophagy and chronic mitochondrial dysfunction which is
reflected by progressive formation of megamitochondria, di-
minished activity of cytochrome c oxidase and reduced intra-
cellular glutathione and finally results in organ dysfunction
(Morath et al 2008; Morath et al 2013; Ruppert et al 2015).

The brain – The brain is the most vulnerable organ in
OADs. Neurological complications are frequent and often
include non-specific features such as neurodevelopmental
delay, intellectual disability, epilepsy and psychiatric dis-
orders (Baumgartner et al 2014). Bilateral lesions of basal
ganglia, in particular of globus pallidus, classically
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occurring during acute metabolic decompensation and of-
ten termed Bmetabolic stroke^, result in movement disor-
ders, such as dystonia and chorea. Less frequently, brain
atrophy and white matter abnormalities are identified by
brain imaging (Radmanesh et al 2008; Baker et al 2015).
The intestinal tract – A likely underestimated long-term
complication is pancreatitis, often with atypical presenta-
tion. The true prevalence of chronic or recurrent acute
pancreatitis is unclear (Marquard et al 2011); however,
individuals with chronic renal failure (CRF) are at in-
creased risk (Pitchumoni et al 1996).
The heart – Cardiac involvement is a potentially severe
long-term complication of MMA and may cause rapid
deterioration or sudden death also in adulthood (Prada
et al 2011). Less commonly than in PA but following
the same pattern, life-threatening cardiac arrhythmias,
particularly prolonged corrected QT interval (QTc), hy-
pertrophic or dilated cardiomyopathy may develop
(Fraser and Venditti 2016). Heart failure can also occur
in the absence of cardiomyopathy (Azar et al 2007).
The kidney – CRF is a frequent complication (Morath
et al 2013). In isolated MMA, the risk of CRF can be
predicted by three parameters: (1) the underlying enzy-
matic defect (mut0, cblB > cblA, mut−), the urinary con-
centration of methylmalonic acid before CRF (de Rivero
Vaccari et al, 2016) and cobalamin responsiveness
(Horster et al 2007; Horster et al 2009). CRF occurs even
in mildly affected and Bmetabolically stable^ patients re-
quiring hemodialysis or kidney transplantation in adult-
hood (Haarmann et al 2013). Parenteral treatment with
hydroxocobalamin in cobalamin-responsive patients
(Haarmann et al 2013), intensification of dietary therapy
and close monitoring of therapy (Schmitt et al 2004) may
slow down kidney dysfunction, but in the long run con-
ventional metabolic therapy is unlikely to prevent the
manifestation of CRF in individuals with increased risk.
The eye – Optic neuropathy has been reported in eight
patients with MMA, but its true frequency may be
underestimated. Age of onset ranged between 2 and
24 years (Martinez Alvarez et al 2016). Acute bilateral
loss of vision has been described in two adults (Williams
et al 2009; Traber et al 2011) and one adolescent patient
with isolated MMA (Pinar-Sueiro et al 2010). Treatment
trials with antioxidant drugs (coenzyme Q10 with or with-
out vitamin E) in a limited number of individuals showed
discrepant results (Williams et al 2009; Pinar-Sueiro et al
2010; Traber et al 2011).

Management

Recommendations for acute and long-term management have
recently been published by an international expert group

(Baumgartner et al 2014), which can be consulted for detailed
advice. For acute metabolic crises in adults, glucose (4–6 g/kg
BW/d) and L-carnitine (50–100 mg/kg BW/d) should be ad-
ministered intravenously.

The aforementioned recommendations are particularly
helpful for the management of pediatric patients. However,
literature addressing management and needs of adult patients
affected by MMA is still rare and incomplete (Martin-
Hernandez et al 2009). It is crucial to highlight here that gen-
eral supportive care is often the major and most important part
of long-term management of adults with OADs. Most patients
have a high burden of multisystemic health problems requir-
ing multidisciplinary care, and most of them are not able to
live independently (Martin-Hernandez et al 2009). Mood dis-
orders have to be anticipated and treated in this age group
(Baumgartner et al 2014). In addition education and employ-
ment issues, independent housing, appropriate physiotherapy,
medical needs, such as hearing or speech aids, and regular
follow-up appointments (e.g. neurologic, cardiologic, endo-
crinologic, ophthalmologic, dental/oral care etc.) should be
adapted according to the individual requirements. Every pa-
tient should also be given an emergency card containing mea-
sures to be taken in acute situations.

In combination with secondary hyperparathyroidism due to
CRF there is a high risk of osteoporosis and pathological
fractures. The use of antiresorptive medications such as
bisphosphonates and diagnostic tools (e.g. dual energy X-
ray) are not systematically evaluated in this particular patient
group; therefore, treatment has to be tailored individually
(Baumgartner et al 2014).

Organ transplantation

The high burden of long-term complications has led to an
intensive debate regarding liver, combined liver-kidney or
kidney transplantation and the best timing (Sloan et al
2015). Most evidence is based on case reports; only one larger
series on liver and combined liver transplantation is available
(Niemi et al 2015) and a smaller case series on kidney trans-
plantation (Brassier et al 2013). Therefore, more systematic
studies addressingwho, when and which organs (liver, kidney,
combined liver/kidney) should be transplanted are needed.

Pregnancy

Pregnancies in MMA patients are often complicated by cesar-
ean delivery and increased risk of prematurity (Raval et al
2015), but with early diagnosis through newborn screening
and improved pediatric care normal pregnancy, delivery and
fetal outcome can be achieved more frequently (Jacquemyn
et al 2014). The use of carnitine and high-dose cobalamin
treatment (in cobalamin-responders) is considered safe
(Deodato et al 2006; Martin-Hernandez et al 2009). A
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teratogenic effect of MMA is not apparent, however, reports
on pregnancies are still scarce. Langendonk et al (2012) re-
ported on two pregnancies; one had no abnormalities and the
other showed intrauterine growth retardation but with normal
postnatal development.

Outcome and prognosis

The overall long-term outcome of individuals with isolated
MMA often remains poor and is influenced by the onset type,
enzymatic defect and cobalamin responsiveness. In general,
cobalamin-responsive patients (mainly CblA-type MMA)
have a much better outcome than non-responders (Nizon
et al 2013; Baumgartner et al 2014; Kolker et al 2015a, b).
CRF in particular, i.e. inmut0- and CblB-type MMA, plays an
important role with increasing age and has a negative impact
on survival (Kolker et al 2015a, b). In summary, the long-term
outcome of MMA is still unknown and there is uncertainty
about the risk of developing (multiple) organ dysfunction with
increasing age and about optimal long-term management in
adult patients (Kolker et al 2015a, b).

Propionic aciduria

Propionic aciduria (PA, OMIM #606054) is an autosomal re-
cessive OAD caused by deficiency of biotin-dependent propi-
onyl-CoA carboxylase (EC 6.4.1.3) due to pathogenic genetic
variations in PCCA (OMIM #232000) and PCCB (OMIM
#232050) encoding subunits A and B (Ugarte et al 1999).
Propionyl-CoA carboxylase catalyzes the carboxylation of
propionyl-CoA to D-methylmalonyl-CoA upstream of
methylmalonyl-CoA mutase, which explains the overlapping
biochemical and clinical phenotypes of PA and MMA pa-
tients. The estimated overall incidence of PA is one in 100–
150,000 newborns (Baumgartner et al 2014; Shchelochkov
et al 2016). Higher incidences are found in Arabic countries
(Moammar et al 2010) and the Inuit population of Greenland
(Ravn et al 2000).

Clinical presentation, long-term complications
and management

In analogy to MMA, individuals with PA can also be distin-
guished by EO and LO variants, and many long-term disease
complications follow a similar pattern. However, the frequen-
cy of cardiac and renal manifestations is different (Deodato
et al 2006; Kolker et al 2015a, b).

CNS – The brain is the most frequently affected organ;
symptoms occur acutely during so-called Bmetabolic stroke^
or chronically. Most common clinical findings are intellectual
disability, movement disorders and epilepsy (Fraser and

Venditti 2016). An association with autism spectrum disorders
and PAwas reported (Witters et al 2016).

The kidney – In contrast toMMA patients, CRF is usually
not found in pediatric PA patients, and the first reports
about this complication were published just a few years
ago. The first reported PA patient with CRF was 42 years
old (Lam et al (2011) and underwent kidney transplanta-
tion. A causal link between PA and CRF remained un-
clear before additional patients with CRF were identified
(Vernon et al 2014; Kolker et al 2015a, b).
The heart – One of the clinically most relevant compli-
cations of PA is dilated or, less frequently, hypertrophic
cardiomyopathy (Mardach et al 2005). Cardiomyopathy
may deteriorate despite pharmacotherapy, but may be re-
versible following liver transplantation (Romano et al
2010; Arrizza et al 2015). Prolonged QTc interval is the
most frequent cardiac manifestation in PA. Therapy with
β-blockers should be considered (Kakavand et al 2006;
Baumgartner et al 2007; Jameson and Walter 2008;
Rodriguez-Gonzalez and Castellano-Martinez 2016).
Inhibition of the KvLQT1/KCNE1 potassium channel
by toxic metabolites with concomitant prolongation of
action potentials in cardiomyocytes is a potential
pathomechanism (Rodriguez-Gonzalez and Castellano-
Martinez 2016; Grunert et al 2017). Furthermore, coen-
zyme Q10 depletion may cause cardiac failure; thus, sup-
plementation with coenzyme Q10 is discussed (Fragaki
et al 2011).
The skeletal system – Independent from the renal status,
patients are at increased risk of osteopenia or osteoporosis
(Pena et al 2012). In contrast to MMA, fewer patients
with PA suffer from pathological bone fractures
(Martin-Hernandez et al 2009). Nevertheless routine
scans with dual-energy X-ray absorptiometry is recom-
mended (Fraser and Venditti 2016).
The eyes and the ears – Optic neuropathy, optic nerve
atrophy, cataracts, ocular apraxia and bilateral sensori-
neural hearing loss have been described as long-term
complications (Ianchulev et al 2003; Williams et al
2009; Pinar-Sueiro et al 2010; Arias et al 2014;
Martinez Alvarez et al 2016). Whether supplementation
therapy with coenzyme Q10 and vitamin E is beneficial
remains to be elucidated (Martinez Alvarez et al 2016).
One study has proposed pharmacologic modulation of
potassium fluxes through KvLQT1/KCNE1, which is
expressed in cardiomyocytes and the inner ear, as novel
therapeutic strategy (Grunert et al (2017). However, a
clinical study evaluating this concept has not been
reported.
Similar to MMA, acute treatment of metabolic crises in
adults comprise intravenous administration of glucose
(4–6 g/kg BW/d) and L-carnitine (50–100 mg/kg BW/d).
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Organ transplantation

Recommendations for metabolic treatment were published re-
cently and, thus, are not discussed here (Baumgartner et al
2014). Since the description of long-term complications has
challenged our view on the therapeutic ability to positively
influence the metabolism of PA patients by conventional met-
abolic therapy, liver transplantation is increasingly discussed
as a relevant alternative. In general, liver transplantation in PA
patients should be regarded as supportive treatment that helps
to normalize propionyl-CoA carboxylase activity in the liver,
but not in other organs rather than curative treatment
(Schlenzig et al 1995).

Although the first reports initially showed ambiguous re-
sults or even unsuccessful attempts in treating PA with liver
transplantation (Schlenzig et al 1995; Leonard et al 2001), in
recent years the number of patients with PAwho have received
a liver transplantation and reached a good outcome has in-
creased (Barshes et al 2006; Rela et al 2007; Romano et al
2010; Vara et al 2011; Chapman et al 2012; Kasahara et al
2012; Fagiuoli et al 2013; Nagao et al 2013; Arrizza et al
2015; Charbit-Henrion et al 2015). Charbit-Henrion et al
(2015) and other studies suggest that liver transplantation
should be considered earlier in life, since younger organ re-
cipients show better outcomes following liver transplantation
probably as a result of a metabolic intoxication for a shorter
period of time and a better nutritional status, whereas older
recipients developed severe complications, such as hepatic
artery thrombosis, cardiac or pulmonary insufficiency. Liver
transplantation should be considered in patients with frequent
episodes of hyperammonemia, metabolic crises and acute de-
compensations. CRF was observed as a complication follow-
ing liver transplantation (Charbit-Henrion et al 2015).
Whether this reflects an additive negative effect due to cal-
cineurin inhibitor-mediated nephrotoxicity remains to be elu-
cidated. In contrast, progression of cardiomyopathy in PA
may be halted or even reversed after liver transplantation,
which is unlikely to be achieved with conventional metabolic
therapy (Romano et al 2010; Arrizza et al 2015).

Pregnancy

A few successful pregnancies of women with PA have been
reported (Van Calcar et al 1992; Langendonk et al 2012; Van
Calcar 2015; Scott Schwoerer et al 2016). Fetal development
was considered as normal. To prevent metabolic crises or oth-
er negative effects of PA during pregnancy, it is of utmost
importance that topics, such as pregnancy, contraception and
sexual health, are discussed with women having PA in time
and an individually adapted metabolic management is
discussed and agreed in advance (Baumgartner et al 2014).
As pregnancy represents a period with higher metabolic turn-
over and higher protein tolerance, dietary supplementation

and medical therapy should be adapted to the individual needs
requir ing frequent fol low-up appointments in a
multiprofessional setting (Baumgartner et al 2014). The in-
crease in cardiac output should also be monitored closely,
e.g. with the help of an echocardiogram, to identify develop-
ing cardiomyopathies, which might lead to cardiac failure
during or after pregnancy (Lewey and Haythe 2014).

Isovaleric aciduria

Isovaleric aciduria (IVA, OMIM # 243500) is a rare disorder
of leucine metabolism with an estimated worldwide birth
prevalence of 1:100,000 newborns diagnosed by newborn
screening and 1:280,000 diagnosed after the onset of symp-
toms (Moorthie et al 2014). Pathogenic variations in the IVD
gene on 15q15.1 encoding isovaleryl-CoA-dehydrogenase
(EC 1.3.8.4) result in reduced enzyme activity and accumula-
tion of isovaleryl-CoA and its derivates. Untreated patients are
at risk of acute, often neonatal, metabolic crisis with acidosis
and hyperammonemia leading to coma, severe neurological
damage and death. However, the clinical presentation is vari-
able. In analogy to MMA and PA, individuals are commonly
divided into EO and LO groups. Thirdly, the implementation
of newborn screening has unraveled a biochemically mild and
clinically predominantly asymptomatic group of individuals
with IVA, mostly associated with a common missense muta-
tion c.932C > T (p.Ala282Val) (Ensenauer et al 2004).
Besides this specific Bmild^ mutation, although, over 50 mu-
tations in the IVD gene are known, genotype-phenotype cor-
relation is, up to date, poorly understood (Vockley and
Ensenauer 2006).

Clinical presentation and long-term disease outcome
in adults

In 1966, Tanaka and co-workers (Tanaka et al 1966), de-
scribed IVA as the first organic aciduria. In comparison to
MMA and PA, individuals with IVA appear to have a less
severe disease course. However, despite its delineation over
50 years ago the knowledge about long-term outcome and late
complications in adult patients with IVA is still incomplete.
Evidence-based recommendations are still missing.

Few studies reporting on the clinical phenotype comprise
data of adolescent and adult patients. Systematic evaluation of
21 symptomatic IVA patients (age 2.2–25.3 years) and the
available literature demonstrated higher mortality (33%) in
the EO group, predominantly during the first neonatal decom-
pensation, compared to the LO group (Grunert et al 2012).
However, EO patients surviving the initial metabolic decom-
pensation had a better neurocognitive outcome (82% unre-
markable neurocognitive outcome) than LO patients (44%)
(Grunert et al 2012). Recent publications from the European
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registry and network for intoxication type metabolic diseases
(E-IMD; https://www.eimd-registry.org) including adolescent
and adult IVA patients [n = 49, age: 0.1–45.8 years (Kolker
et al 2015a, b); n = 83, age 0.1–48.9 years (Heringer et al
2016)] confirmed clinical and neurocognitive outcome de-
pend on early diagnosis and treatment in IVA. Symptomatic
patients present with developmental delay, movement disor-
ders and neurocognitive deficits; however, the majority of IVA
patients had a normal clinical and neurocognitive outcome
(Kolker et al 2015a, b; Heringer et al 2016).

In contrast to PA and MMA, there is no apparent disease
progression in IVA patients (Martin-Hernandez et al 2009)
and multisystemic organ dysfunction has not been described.
Gastrointestinal symptoms, such as pancreatitis (Kahler et al
1994), vomiting, diarrhea and protein aversion, seem to be
rare (Kahler et al 1994; Kolker et al 2015a, b) and do not affect
growth (Kolker et al 2015a, b). In 21 symptomatic patients, no
metabolic decompensation occurred after the age of 9 years
(Grunert et al 2012). Nevertheless, single cases of adult met-
abolic decompensations have been reported (Feinstein and
O’Brien 2003; Kimmoun et al 2008).

Management

IVA has been included in newborn screening programmes in
an increasing number of countries (Loeber et al 2012; Horster
et al 2017) allowing pre-symptomatic diagnosis for LO-type
IVA patients, but is likely to also prevent neonatal decompen-
sation in the majority of EO-type IVA patients (Heringer et al
2016). Presymptomatically diagnosed and treated individuals
often remain asymptomatic until adolescence/adulthood. In
many countries, however, there is still a need to establish a
transition from pediatric to adult health care and long-term
care to prevent a drop-out of medical care and to support
lifelong compliance analogous to other inborn metabolic dis-
eases (Mutze et al 2011; Mutze et al 2016). Although meta-
bolic crisis occur rarely in adulthood, prolonged fasting and
catabolic stress should be avoided life-long to prevent meta-
bolic decompensations (Feinstein and O’Brien 2003) by oral
or intravenous carbohydrate supply (4–6 g/kg BW/d) and if
necessary additional carnitine supplementation (50–100 mg/
kg BW/d). Patients, therefore, should also be equippedwith an
emergency card.

The safety and efficacy of pharmacological and dietary
management of IVA in adolescence and adulthood has not
yet been systematically studied, and there is a need for inter-
national harmonization of treatment strategies. Considerable
variations in the dietary management and pharmacotherapy
still exist worldwide, which increases the risk of over- and
undertreatment (Heringer et al 2016; Pinto et al 2017).

In classical IVA (EO and LO onset), a protein-controlled
diet (according to the WHO recommendation for safe daily
protein intake) avoiding excessive protein intake is currently

more often used than a low leucine diet with leucine-free
amino acid supplements reflecting that over the years dietary
management has become more and more relaxed for IVA pa-
tients. Carnitine supplementation is recommended as life-long
therapy to prevent secondary carnitine depletion and promote
the formation of isovalerylcarnitine. In contrast, the effect of
additional glycine supplementation, which provides an alter-
native strategy for the esterification of toxic isovaleryl-CoA,
remains controversial.

In asymptomatic individuals with mild IVA, indication for
preventive therapy is uncertain. To date, prevention of meta-
bolic crisis by patients’ education and equipment with an
emergency card and, if necessary, low dose carnitine supple-
mentation is recommended (Vockley and Ensenauer 2006).
However, no metabolic crises in patients with mild IVA have
been reported yet.

Pregnancy

Several pregnancies of women with IVAwere reported, with-
out evidence for teratogenicity (Spinty et al 2002; Castelnovi
et al 2010; Habets et al 2012). Outcome for mother and child
appear to be good. Special needs during pregnancy, i.e. suffi-
cient protein, vitamin and carnitine intake, should be moni-
tored and catabolic stress, especially during labor and involu-
tion of the uterus, should be covered by intravenous glucose
(Habets et al 2012).

Glutaric aciduria type 1

Glutaric aciduria type 1 (GA1, OMIM #231670) is a rare
autosomal recessive disorder of L-lysine, L-tryptophan and
L-hydroxytryptophan metabolism with an estimated inci-
dence of 1:110,000 newborns (Kolker et al 2007). Inherited
deficiency of glutaryl-CoA dehydrogenase (EC 1.3.8.6) re-
sults in accumulation of glutaric acid, 3-hydroxyglutaric acid,
glutaconic acid and non-toxic glutarylcarnitine. Since untreat-
ed patients develop severe irreversible neurologic symptoms,
GA1 has been termed a ‘cerebral’ organic aciduria, but the
clinical phenotype is still evolving.

Two biochemical subtypes, i.e. low and high excretors,
were defined arbitrarily based on the amount of urinary
glutaric acid excretion (Baric et al 1999) and inversely corre-
late with residual enzyme activity. Both subgroups were
thought to share the same clinical course in infancy and child-
hood (Christensen et al 2004; Kolker et al 2006), which has
been explained by entrapment and subsequent accumulation
of neurotoxic dicarboxylic metabolites in the brain compart-
ment (Sauer et al 2006). However, recent studies unraveled a
higher frequency of white matter abnormalities and increased
concentrations of neurotoxic metabolites progressing with age

J Inherit Metab Dis

https://www.eimd-registry.org


in high excretors compared to low excretors (Harting et al
2015). The clinical relevance of this finding is still unclear.

Clinical presentation and long-term complications

Neonates and infants may present with unspecific and transient
neurologic symptoms like muscular hypotonia; 75% of them
are macrocephalic. Subdural hemorrhage may occur following
minor head trauma (Brismar and Ozand 1995; Vester et al
2016) and may be mistaken as the result of abusive head trau-
ma (Morris et al 1999; Vester et al 2015). Noteworthily, sub-
dural hemorrhage may also manifest in early diagnosed and
treated children without macrocephaly (Zielonka et al 2015).

Striatal damage and complex movement disorder with
predominant dystonia – Over 90% of untreated patients
develop a complex movement disorder with predominant
dystonia, mostly between the age of 3–36 months, but not
after the age of 6 years, indicating a window of vulnera-
bility. Onset of dystonia may be acutely during an enceph-
alopathic crisis precipitated by catabolism and infectious
diseases or insidiously and is the clinical correlate of bilat-
eral striatal necrosis (Kolker et al 2006; Harting et al
2009). Insidious onset of symptoms has been increasingly
observed in neonatally diagnosed individuals not adhering
to dietary recommendations (Heringer et al 2010). Overall,
the severity of the acquired movement disorder and motor
disability remains stable with increasing age. However,
dystonia, superimposed on axial hypotonia, tends to be-
come fixed and to be associated with akinetic-rigid parkin-
sonism with age. Orofacial involvement often results in
dysarthria and speech apraxia. Treatment of dystonia is
difficult and often frustrating; baclofen and trihexiphenidyl
are frequently used for generalized dystonia and botuli-
num toxin A for focal dystonia (Gitiaux et al 2008). The
risk of epilepsy is increased and might even be the initial
presentation (McClelland et al 2009; Kolker et al 2015a,
b). Cognitive functions, however, seem to be preserved in
most individuals with GA1, even after striatal damage
(Boy et al 2015).
Extrastriatal manifestations –Besides acute and insidious
onset of motor symptoms, patients with supposedly late
onset of symptoms, i.e. presenting with first symptoms
after the window of vulnerability for striatal damage, have
also been described. The first report described a 19-year-
old patient with headache, nystagmus, upward gaze palsy,
fine motor disturbances and periventricular white matter
T2 hyperintensity (Bahr et al 2002). In the following years,
additional patients aged 8–71 years were published
(Kulkens et al 2005; Fraidakis et al 2015; Pierson et al
2015; Boy et al 2017a, b). Avariety of non-specific general
and neurologic symptoms, such as headaches, nausea, ver-
tigo, nystagmus, dysarthria, hyper- or hypoactive tendon

reflexes, muscular weakness, transient ataxia or fine motor
deficits, were reported. Older patients seemed to have
more severe neurologic symptoms including progressive
dementia, tremor and focal epilepsy (Boy et al 2017a, b).
In addition, six asymptomatic adult female patients with
uneventful pregnancy and deliverywere diagnosed follow-
ing initially abnormal newborn screening results of their
children (Crombez et al 2008; Garcia et al 2008; Vilarinho
et al 2010; Boy et al 2017a, b). Crombez et al (2008) and
Garcia et al (2008) reported that high levels of glutaric acid
or 3-hydroxyglutaric acid in pregnant patients have no
significant effects on the newborns, although neuroimag-
ing showed slightly delayedmaturation of these newborns.
It is noteworthy that all reported patients with late mani-
festation of symptoms were high excretors and did not
develop striatal necrosis. Low-excreting patients with late
onset of symptoms have not been reported so far. All late-
onset GA1 patients commonly show extrastriatal abnor-
malities on brain MRI such as frontotemporal hypoplasia
(as the most common and characteristic MRI finding in
these patients) and white matter changes (also found in
acute or insidious onset type patients and apparently in-
creasing with age). In addition, subependymal lesions oc-
curred in patients older than age 12 years and in one early
treated patient (Kulkens et al 2005; Korman et al 2007;
Herskovitz et al 2013; Pierson et al 2015; Boy et al
2017a, b). These lesions are predominantly located at the
roof of the lateral ventricles and their number and size
slowly increase with age. However, histopathology was
not reported and, therefore, the etiology of these lesions
still remains unclear. It has been reported that neurotoxic
metabolites accumulate in the brain due to limited flux of
dicarboxylic acids across the blood-brain barrier (Sauer
et al 2006; Boy et al 2017a, b). Therefore, it has been
hypothesized that extrastriatal changes in late-onset GA1
might reflect cumulative, chronic neurotoxicity in untreat-
ed patients with a high-excreting phenotype. However,
these patients are not categorically different from early
treated patients (Sauer et al 2006; Boy et al 2017a, b).
Extracerebral and non-neurologic manifestations –
Recently, it was demonstrated that the disease manifesta-
tion of GA1 is not strictly limited to the CNS. One adult
patient with peripheral polyneuropathy has been reported
highlighting that extracerebral manifestations like pe-
ripheral nervous system might also be involved in long-
term disease course (Herskovitz et al 2013). As the first
extraneurologic manifestation, renal disease might also
contribute to long-term complications (Kolker et al
2015a, b). In a few adults with GA1, compensated CRF
was found and did not correlate with the neurological
phenotype. In contrast to other OADs, none of these pa-
tients underwent hemodialysis. Renal disease in GA1 had
also been reported in pediatric patients (Poge et al 1997;
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Pode-Shakked et al 2014; du Moulin et al 2017). In a
GA1 mouse model, tubular dysfunction and altered mi-
tochondrial morphology have been observed during in-
duced metabolic crises (Thies et al 2013), and toxic di-
carboxylic metabolites are thought to negatively influ-
ence the transport of dicarboxylic acids in proximal tu-
bule cells (Stellmer et al 2007).

Management

GA1 has been included into newborn screening programmes
in many countries (Loeber et al 2012; Horster et al 2017).
Early diagnosis is the prerequisite of effective treatment and
favourable outcome. Metabolic treatment comprises low ly-
sine diet with supplementation of lysine-free, tryptophan-re-
duced, arginine-containing amino acid mixture, carnitine sup-
plementation (30–50 mg/kg BW/d), intravenous glucose (4–
6 g/kg BW/d) and intensified emergency treatment during

catabolic episodes. Several studies in different countries con-
firmed a favourable outcome if (1) diagnosis was made and
treatment was started neonatally, (2) metabolic treatment
followed current recommendations and (de Rivero Vaccari
et al, 2016) patients were followed by a multiprofessional
team of experts (Naughten et al 2004; Kolker et al 2006;
Kolker et al 2007; Heringer et al 2010; Strauss et al 2011;
Viau et al 2012; Couce et al 2013; Lee et al 2013). Based on
this, evidence-based recommendations have been revised re-
cently (Boy et al 2017a, b).

Effectiveness of dietary treatment after 6 years has not been
systematically studied. Dietary protocol might be relaxed in
this age group and should be based on protein control using
natural protein with a low lysine content and avoidance of
lysine-rich food since evidence for chronic neurotoxicity is
increasing (Harting et al 2015; Boy et al 2017a, b). Carnitine
should be supplemented lifelong. Since a positive effect of
treatment on the extrastriatal MRI abnormalities has not yet
been demonstrated, treatment recommendations for high- and

Fig. 1 Age-dependent and organ-
specific disease manifestation in
organic acidurias. The synopsis
shows the age groups at which
organ-specific symptoms are
characteristically found or mani-
fest in individuals with different
organic acidurias. Some manifes-
tations are less frequently found
with increasing age (e.g. acute
metabolic crisis, feeding difficul-
ties), whereas others persist or
aggravate over time (e.g. move-
ment disorder) or are only found
in older age groups (e.g. mood
disorder). The figure does not re-
fer to the relative or absolute fre-
quency of the depicted clinical
presentations
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low-excreting patients are the same (Boy et al 2017a, b).
Further studies are needed to evaluate differences in the risk
profiles of biochemical subtypes and the stratification of treat-
ment. Pharmacologic modulation of lysine oxidation appears
to be a therapeutic option but recent attempts to inhibit Dhtkd1
(Dehydrogenase E1 and Transketolase Domain Containing 1)
failed to rescue the biochemical and clinical phenotype of
Gcdh-deficient mice, an animal model with complete loss of
glutaryl-CoA dehydrogenase activity (Biagosch et al 2017).

Outlook

As a consequence of increased awareness, improved diagnos-
tic and therapeutic options, an increasing number of individ-
uals with OADs reach adulthood. However, it has become
increasingly evident that adolescent and adult patients often
face progressive (multiple) organ manifestations despite an
early start of metabolic treatment and that long-term complica-
tions are also observed in supposedly Bmetabolically stable^
patients. Figure 1 provides an overview on age-dependent and
organ-specific disease manifestations in OADs.

These new findings challenge our view on the natural history
and long-term outcome as well as efficacy and safety of current
treatment strategies and highlight the need for systematic ob-
servational and interventional studies and, finally, the develop-
ment of improved treatment and care concepts. To overcome
these current limitations is the next giant leap for OADs, as for
most other—if not all—inherited metabolic diseases. The es-
tablishment of European and international networks such as the
European registry and network for Intoxication type Metabolic
Diseases (E-IMD) and the European Reference Network for
Hereditary Metabolic Diseases (MetabERN) is an important
prerequisite to systematically collect natural history and out-
come data, to initiate a multi-stakeholder approach to these rare
diseases, to empower patients and their families and to harmo-
nize diagnosis, treatment and care, and finally, to improve the
health and quality of life of individuals with OADs and other
inherited metabolic diseases.
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