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Inborn errors of metabolism (IEM) are a unique class of genetic diseases due to mutations in genes involved 
in key metabolic pathways. The combined incidence of IEM has been estimated to be as high as 1:1000. 
Urea Cycle disorders (UCD), one class of IEM, can present with cerebral edema and represent a possible 
target to explore the utility of different neuromonitoring techniques during an hyperammonemic crisis. 
The last two decades have brought advances in the early identification and comprehensive management 
of UCD, including further understanding of neuroimaging patterns associated with neurocognitive 
function. Nonetheless, very important questions remain about the potential acute neurotoxic effects of 
hyperammonemia to better understand how to treat and prevent secondary brain injury. In this review, we 
describe existing neuromonitoring techniques that have been used in rare metabolic disorders to assess and 
allow amelioration of ongoing brain injury. Directions of future research should be focused on identifying 
new diagnostic approaches in the management of metabolic crises to optimize care and reduce long term 
morbidity and mortality in patients with IEM.
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INTRODUCTION

Inborn errors of metabolism (IEM) are a unique 
class of genetic diseases caused by mutations in genes 
involved in key metabolic pathways. There are more than 
1000 IEM described to date and different taxonomical 
approaches have been used to categorize them [1,2]. Par-
tial or complete defect in a specific enzyme or transport 
protein or co-factor leads to manifestations of the disease 
by one of the following mechanisms – a. accumulation 
of a toxic metabolite (eg, urea cycle disorders, galactose-
mia, maple syrup urine disease, etc.), b. failure of energy 
machinery (eg, fatty acid oxidation disorders, glycogen 

storage disorders, mitochondrial diseases, etc.) and c. 
abnormal breakdown of complex storage substances 
(eg, lysosomal and peroxisomal storage disorders) [3]. 
Clinical presentation is often non-specific and multi-sys-
temic affecting the central and peripheral nervous system, 
skeletal muscle, heart, and liver. Disorders mediated by 
build-up of noxious metabolite and failure of energy 
production typically present in the neonatal period or 
infancy, but partial enzyme deficiency can lead to later 
and atypical presentations in childhood or even adulthood 
in the presence of a trigger [4]. “Triggers” could be any 
event or endogenous substances which induce catabolic 
phenomena such as fasting, infections, trauma, surgery, 
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and certain medications (eg, valproate in mitochondrial 
diseases, steroids in urea cycle disorders).

The combined incidence of IEM has been estimat-
ed to be as high as 1:1000 [2]. However, individually 
these disorders are exceedingly rare and can present as 
diagnostic dilemmas if a high index of suspicion is not 
maintained. The expansion of newborn screening (NBS) 
programs has changed the landscape for many of these 
disorders as early recognition and initiation of specific 
diet and treatment can lead to reduction in mortality and 
morbidity [5]. However, certain IEM such as proximal 
urea cycle disorders (UCD) and mitochondrial disorders, 
do not have a reliable biomarker to be detected by NBS 
and therefore, present as acute neurometabolic emergen-
cies [6,7]. A metabolic emergency encompasses one or 
a combination of the following laboratory abnormalities 
which is peculiar to each class of disorders – hypoglyce-
mia, hyperammonemia (HA), metabolic acidosis, trans-
aminitis, rhabdomyolysis, and coagulopathy. These meta-
bolic aberrations are the harbinger of sinister neurological 
sequelae including altered sensorium, status epilepticus, 
cerebral edema, persistent emesis, respiratory failure, and 
stroke-like episodes. Animal models and non-invasive in 
vivo studies using magnetic resonance spectroscopy have 
helped to elucidate the mechanisms of acute brain injury 
[8]. For example, we now know that HA exerts toxic 
effects on the brain by increased glutamine levels which 
in turn causes raised intracranial pressure, loss of NMDA 
receptors, excitotoxic cell injury, and over-production of 
reactive oxygen species (Figure 1). Management of acute 
decompensation in IEM is focused on common themes 

which consist of providing additional caloric support 
(in the form of intravenous dextrose or intralipids), tem-
porary cessation of exogenous protein in some class of 
disorders (such as organic acidemias, urea cycle disor-
ders) and elimination of offending molecules with special 
drugs (eg, sodium phenylbutyrate and sodium benzoate 
for HA) [9,10]. Due to significant morbidity and mortal-
ity associated with these episodes, management is often 
pursued in critical care units and meticulous neuromon-
itoring becomes key to prevent secondary brain injury.

For the last two decades, the Urea Cycle Disorders 
Consortium (UCDC) has conducted a longitudinal study 
including almost 700 children with UCD to further un-
derstand the natural history of UCD. The data accumulat-
ed by this consortium has revealed important information 
related to outcome, focusing primarily on neuroimaging 
findings and neurocognitive function [11,12]. However, 
very important questions remain about the potential acute 
neurotoxic effects of HA to further understand how to 
treat and prevent secondary brain injury during an acute 
crisis. In this review, we describe existing neuromoni-
toring techniques that have been used in rare metabolic 
disorders to rapidly detect and prevent secondary brain 
injury. It is noteworthy to recognize that we present 
low-quality evidence which is not intended to change 
current clinical practice; nonetheless, exploring new 
diagnostic approaches in the management of metabolic 
crises is crucial to optimize care for patients with IEM.

Figure 1. Glutamine effects on CNS.
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NEUROMONITORING TECHNIQUES IN 
ACUTE BRAIN INJURY

Secondary brain injury develops when mismatch 
exists between cerebral metabolic demand and energy 
substrate leading to cell damage and death [13]. These 
techniques provide unique variables to monitor patho-
physiologic mechanisms to ameliorate and prevent 
secondary brain injury and have been previously applied 
in the adult neuro-intensive care unit for traumatic brain 
injury (TBI) [14-16], subarachnoid hemorrhage [16,17], 
intracerebral hemorrhage [18,19], and acute ischemic 
stroke [16].

Understanding cerebral physiology is paramount 
in the management of patients with acute brain injury 
regardless of the etiology. Cerebral autoregulation (CA) 
is a cerebral compensatory mechanism to ensure stable 
and regulated blood flow in the brain despite changes of 
cerebral perfusion pressure [20-22]. With intact CA, a 
rise in cerebral perfusion pressure produces vasoconstric-
tion, a decrease in cerebral blood volume, and a fall in 
intracranial pressure (ICP). With impaired CA, changes 
in cerebral perfusion result in a passive pressure effect 
intracranially, producing either ischemia when the blood 
pressure is too low or increased ICP when the pressure 
is too high. The correlation between hemodynamic vari-
ables such as the median arterial pressure and any indirect 
or direct measure of cerebral blood flow can provide an 
overall assessment of CA. Monitoring of continuous 
CA at the bedside is feasible and has the potential to be 
used to direct blood pressure management in acutely ill 
patients with IEM.

NEUROIMAGING

As neuroimaging technologies have become more 
accessible, the current research has focused on the use of 
non-invasive neuroimaging technology to understand the 
long-term consequences and risk of neurodevelopmental 
disabilities in patients with IEMs. For instance, altered 
brain networks in the frontal lobes, abnormal white mat-
ter microstructure, and damage of corticospinal tracts 
are often present in structural and functional MRI and 
Diffusion Tensor Imaging in patients with UCD [23]. Not 
surprisingly, these patients often have deficit in executive 
functioning, including working memory. This section 
will cover multimodal neuroimaging techniques that can 
be considered during a metabolic crisis, recognizing that 
the role of these techniques during acute brain injury is 
less clear and currently there are no formal prospective 
studies evaluating its impact on short- and long-term 
neurological outcomes.

Head Ultrasound/Computed Tomography
Cranial US is a reliable, first line modality performed 

at bedside used to evaluate the neonatal brain morphol-
ogy given it has no risk of radiation. As cerebral edema 
is a severe complication that often accompanies an acute 
metabolic crisis, a cranial US is an acceptable screening 
tool in neonates with suspected IEM and encephalopathy 
or/and focal deficits [24]. Findings suggestive of cerebral 
edema include effacement of the cerebral sulci, flattening 
of the corpus callosum, compressed slit-like ventricles, 
and narrowing of the intrahemispheric fissure and basal 
cisterns [25]. It is important to note that since cerebral 
edema occurs usually 24-48 h after an insult, a cranial US 
may be negative in the acute phase of the disease [25]; or 
if the metabolic crisis occurred remotely from the time 
of delivery. In this case, serial ultrasounds are usually 
performed to evaluate the full evolution of the disease. 
In the absence of acute findings, other findings sugges-
tive of a metabolic disorder include ventricular dilation, 
abnormal cortical folding, germinolytic cysts, abnormal 
white matter, lenticulostriate vasculopathy and absent or 
thin corpus callosum [26]. Computed tomography (CT) 
also allows the identification of cerebral edema and is 
especially useful to detect cerebral hemorrhage, a finding 
that can be seen in certain IEMs, such as glutaric aciduria 
type 1, Menkes disease, and disorders of collagen [27].

Magnetic Resonance Imaging (MRI)
MRI is the modality of choice for evaluating IEM 

as characteristic patterns of brain involvement have been 
described for several metabolic brain disorders [24,28-
31]. Most importantly, performing an MRI in the acute, 
or more often, the subacute stages of injury may provide 
information on the severity and extent of injury, allowing 
the clinician to continue aggressive management or with-
draw life-sustaining measures depending on the projected 
neurodevelopmental outcome. For example, two patterns 
of acute brain injury that have been reported in patients 
with UCD vary depending upon the severity and duration 
of the HA. A diffuse pattern, commonly associated with 
high glutamine levels and worse developmental outcomes 
[32], includes extensive involvement of the posterior ce-
rebral cortex and deep structures including basal ganglia, 
thalami, and brainstem; whereas, a central pattern affects 
mainly the rolandic region, basal ganglia, and internal 
capsule [32,33]. Unfortunately, the diagnostic yield of 
a structural MRI alone in the acute period is limited as 
findings are often non-specific [24] and a variety of IEM 
have overlapping neuroimaging findings.

1 H Magnetic Resonance Spectroscopy (MRS)
The management strategies in IEMs vary greatly and 

rapid confirmation is critical to start immediate treatment 
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long-term continuous video EEG has been identified 
mostly in neonates with hypoxic ischemic encephalopa-
thy to detect subclinical seizures and assist with long term 
prognosis [38,39]. Given that in UCD, acute seizures have 
been identified in 26-87% of the patients during the acute 
phase [40-42], EEG might be a valuable tool to screen for 
and prevent secondary injury during a metabolic crisis.

Identifying neonates who are at increased risk of 
seizures is crucial as symptomatic seizures increase cere-
bral metabolism, oxygen consumption [43,44], oxidative 
stress, and further mitochondrial dysfunction [44-46]. A 
lack of state changes, defined as no recognizable sleep 
or awake states, might be a useful marker to identify this 
population. In a small series of eight patients, a lack of 
state changes was present in all the patients who even-
tually developed clinical or electrographic seizures [40]. 
Interestingly, seizures were found to occur even with nor-
mal plasma levels of ammonia and glutamine, indicating 
that the serum levels are not necessarily correlated with 
the severity of brain injury [40]. A prolonged hyperam-
monemic state can have other residual effects on the brain 
including astrocytic swelling, an increase in blood brain 
barrier permeability, and disruption of energy through de-

and mitigate ongoing acute brain injury. Unfortunately, 
the typical biochemical testing turnaround time is be-
tween 3-4 days and molecular analysis confirmation can 
take up to several weeks [34]. While biochemical and 
molecular testing is mainstay for accurate diagnosis, 
1 H MRS is a non-invasive diagnostic tool that can aid in 
diagnosis even within 6 hours of presentation [30,34,35]. 
By analyzing the presence of peak areas corresponding 
to the extracellular concentration of certain metabolites, 

1 H MRS can provide useful information about the bio-
chemistry of the central nervous system. Table 1 [36,37] 
shows different MRS patterns that have been described in 
a variety of IEMs, many of them treatable.

Often, one single imaging modality is not sufficient 
to serve as a diagnostic or prognostic biomarker, so a pro-
tocol promoting a multimodal approach is often utilized 
in clinical practice.

Continuous Electroencephalogram (EEG)
EEG measures the difference in voltage, or potential, 

between two electrodes (Figure 2). It provides significant 
advantages when compared to other diagnostic methods 
since it is inexpensive, feasible, and safe. The value of 

Table 1. MRS Findings in Select Inborn Errors of Metabolism
NAA Cho MI Glx lac Other peaks Treatable

Zellweger ↓ ↑ ↓ ↑ ↑ Lipid
Neonatal ALD ↓ ↑ Lipid
Infantile Refsum ↓ ↑ ↑ Lipid
RCDP ↓ ↑ Lipid, acetate
PDH ↓ ↑ Acetate Yes
NKH Glycine Yes
S-L-O ↑ Lipid
Salla ↑ ↓
CDG ↓ ↓ ↑ ↑
CPS1, OTCD ↓ ↓ ↓ ↔ Yes
GA type 1 ↓ ↑ ↑ ↑ Yes
GA type 2 ↑ Yes
Mucolipidoses ↓
Krabbe ↓ ↑ ↑ ↑ ↑
MPS ↓ ↑ ↑
MMA ↓ ↑ methylmalonic acid Yes
ALD ↓
Arginase deficiency ↔ ↓ ↑

The arrows indicate the direction of the change. ↓: decreased; ↑: increased; ↔: no change. ALD: adrenoleukodystrophy; RCDP: 
rhizomelic chondrodysplasia punctate; PDH: pyruvate dehydrogenase deficiency; KNH: nonketotic hyperglycinemia; SLO: Smith 
Lemli Opitz; CDG: congenital disorders of glycosylation; CPS1: carbomyl phosphate synthetase deficiency; OTCD: ornithine 
transcarbamylase deficiency; GA: glutaric acidemia; MPS: mucopolysacharoidosis; MMA: methylmalonic acidemia; nl: normal. 
Adapted from Gropman, Andrea L., and Afrouz Anderson. “Novel imaging technologies for genetic diagnoses in the inborn errors of 
metabolism.” Journal of Translational Genetics and Genomics 4.4 (2020): 429-445.
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Intracranial Pressure Monitoring
Cerebral edema is a life-threatening complication 

in patients with severe HA and has been described in 
adults with hepatic encephalopathy [50-54] and children 
with organic acidemias and UCD (Figure 1) [12,55-58]. 
Classically, the management of HA is based on frequent 
plasma ammonia levels [41] which reflect an increased 
nitrogen load in the organism. Even though a serum am-
monia level > 150-200 μmol per liter is a risk factor for 
increased intracranial pressure in adults [59], severe neu-
rological crises have been reported even in the absence 
of severe HA [35,60-62]. The management of increased 
intracranial pressure is urgent as soon as HA progresses 
to cerebral edema to ameliorate secondary brain injury.

The utility of ICP monitoring in HA-induced cere-
bral edema has been described previously in children 
and adults with IEM [62-65]. Measuring ICP is routinely 
used in the neurointensive care unit, especially in TBI 
[66], as it allows to adjust hemodynamic variables that 
can affect cerebral physiology. Spikes of increased ICP in 
IEM can be as high as 60 mmHg [62] (normal value < 20 
mmHg) and prior experience with hyperosmolar therapy 
[50,53,54,62-65,67] and decompressive craniectomy in 
refractory cases [63] have been reported.

Transcranial Doppler Ultrasound (TCD)
Transcranial Doppler Ultrasound provides a rela-

pletion of intermediaries of metabolism including altered 
amino acid and neurotransmitter levels [47-50].

High serum ammonia level might be associated with 
a shorter burst of cerebral activity and longer background 
suppression [40,42]. Another study that included 38 
neonates with UCD (31% with argininosuccinate syn-
thetase deficiency, 26% with ornithine transcarbamylase 
deficiency, 18% with adenylosuccinate lyase deficiency, 
18% with carbamoyl phosphate synthetase 1 deficiency, 
3% with N-acetylglutamate synthetase deficiency, and 
3% with arginase deficiency) demonstrated an EEG with 
severe features, defined as absence of physiological fea-
tures, non-reactive background activity, and/or presence 
of seizures or status epilepticus, which was present in 26% 
of the patients. Patients with “moderate” or “severe” EEG 
had higher levels of ammonia [42]. In clinical practice, a 
change of the EEG background and longer duration of in-
terburst intervals (Figure 2) may indicate worsening HA 
and should prompt the clinician to perform more frequent 
serum levels.

Continuous EEG may also play a role in prognostica-
tion. The severity of EEG pattern and presence of status 
epilepticus were also associated to higher mortality and 
poor long-term developmental outcomes [42]. It has been 
suggested also that better neurodevelopmental outcomes 
could be associated with improvement of EEG back-
ground within 4 days [40].

Figure 2. EEG allows to measure the difference in voltage between two different electrodes (blue circles). 
This signal is then amplified and converted into a digital signal that is processed by the computer. The type of brain 
activity—amplitude and frequency of these waves—depends on the area of the brain, level of arousal, medications, 
presence of seizures, and age. In neonates with HA there are periods of brain activity attenuation (interburst intervals) 
between periods of higher amplitude brain activity (bursts). The duration of interburst intervals may be correlated to a 
high serum ammonia level.
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found in all six MELAS patients and most of the other 
patients with mitochondrial disorders, suggesting a high 
incidence of impaired CO2 reactivity in these patients.

The pathogenesis of acute brain injury in IEM is 
complex and multifactorial that results from a dynamic 
interaction between different cerebral processes includ-
ing CA, metabolic demand, cerebral blood flow, and 
flow-metabolism coupling [72,76]. As cerebral hemody-
namics play a primary role in acute brain injury, TCD 
remains a useful tool to provide insight on possible patho-
physiologic mechanisms to prevent further brain injury 
and improve outcomes in these patients.

Near-infrared Spectroscopy (NIRS)
NIRS is a non-invasive technology that provide a 

continuous measure of regional tissue oxygenation, with 
potential applications in a wide range of clinical scenar-
ios with acute brain injury (Figure 3). A tight coupling 
between oxygen supply and oxygen demand is present in 
the brain and muscles, and the relationship between these 
two variables produces a specific regional oxygen satura-
tion. Specifically, an increase in oxygen consumption or 
a decreased in oxygen delivery can precipitate episodes 
of regional tissue hypoxia and lower levels of oxygen 
saturation in that specific organ.

The utility of NIRS to screen for metabolic diseases 
was previously reported by Cellie et al. [77]. In primary 
or secondary mitochondrial disorders, there is an inherent 
limited capacity to increase microvascular oxygen ex-
traction during metabolic stress, leading to an increased 
regional tissue oxygenation. For example, in patients 
with mitochondrial myopathy (MM), a lower increase in 
deoxyhemoglobin and deoxymyoglobinin (a measure of 
oxygen extraction) was observed during an incremental 
handgrip exercise in affected patients when compared to 
healthy controls [77]. Celie et al. showed that among 12 
patients with unexplained chronic fatigue, four patients 
had an abnormal regional oxygenation level suggesting a 
possible MM. When these patients underwent tissue mus-
cle and skin biopsies and massive parallel sequencing of 
the entire mitochondrial genome, a genetic diagnosis was 
achieved in 100% of the patients [76].

This technology could also provide beneficial infor-
mation on cerebral tissue oxygenation during an acute 
metabolic crisis. A single center study that included four 
neonates with metabolic disorders (three with primary 
mitochondrial disorders and one with methylmalonic aci-
demia) revealed that all the patients had abnormally high 
cerebral oxygen saturations (>90%) [78] due to poor ox-
ygen utilization and mitochondrial dysfunction, leading 
to ineffective oxidative phosphorylation and anaerobic 
glycolysis and lactic acidosis [79].

Another potential utility of NIRS is the ability to 
provide information about CA. Prior studies have shown 

tively inexpensive, non-invasive, and rapid measures of 
cerebral physiology that can be used to estimate blood 
flow velocities (FV) within the intracerebral vessels. A 
Doppler probe emits ultrasound waves through the skull 
that are reflected by moving red blood cells (Figure 3). 
The “Doppler shift frequency” or the difference in the 
frequency between emitted and reflected waves is pro-
portional to the blood FV and used as an indirect measure 
to determine cerebral blood flow [54]. Factors that can 
affect the blood flow velocities include age, gender, he-
matocrit, viscosity, carbon dioxide, temperature, blood 
pressure, and mental or motor activity [68].

The disease model of acute brain injury in IEM is 
poorly understood and likely to be complex and specific 
to each disease. For instance, Strauss et al. detailed the 
evolution of acute striatal injury in an Amish patient with 
glutaric aciduria type 1. A CT perfusion scan performed 
10 hours after the child developed acute opisthotonus 
showed global low cerebral BF, low cerebral blood vol-
ume and transit time within the striatal nuclei. MRI and 
CT scans 90 h later showed a more evident metabolic 
stroke with cytoxic edema in the same region [69]. Con-
sidering that flow velocity and transit time are correlated 
in cerebral regions with impaired CA [70], TCD may 
be useful to detect hemodynamic changes during acute 
strokes in these patients. On the other hand, the utility of 
TCD in patients with cerebral edema due to HA is con-
troversial. A prospective cohort study including 87 adult 
patients admitted to the ICU in a tertiary center in Brazil 
with non-hepatic HA, did not find any correlation be-
tween ammonia levels and cerebral blood flow measured 
by TCD, even in patients with cerebral edema [71]. The 
authors of this study hypothesized that the mechanisms 
associated to cerebral edema in patients with non-hepatic 
hyperammonemia may not be necessarily related to an 
increased blood flow as previously demonstrated in pa-
tients with hepatic HA [72,73]. Nonetheless, these results 
should be interpreted with caution as the cause of HA was 
not correlated and metabolic/genetic testing to diagnose 
IEM was not performed [71]. Despite this, some centers 
suggest the use of TCD to guide clinical management in 
patients with acute HA and organic acidemias [65,74].

The advantage of TCD to measure cerebral BF 
compared to other techniques is the potential to provide 
continuous information about CA, at the bedside and in 
real-time, allowing a wide range of new applications in 
IEM. This was shown by Kodaka et al. in 13 patients 
with mitochondrial disorders (including six with Mito-
chondrial myopathy, Encephalopathy, Lactic acidosis, 
and Stroke-like episodes) [75]. Under conditions of 
normocapnia, hypercapnia, or hypocapnia, mean FV was 
obtained from the right and left middle cerebral arteries 
and correlated with CO2 levels to calculate the parame-
ter K, an index of CO2 reactivity. Lower K values were 
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understanding of the physiological alterations that un-
derlie hepatic encephalopathy in the human and possible 
alternative therapies for this disease [87-93]. The use of 
CMD in pediatrics is sparse and limited only to TBI [94].

In adults with HA, the extracellular concentration 
of lactate is increased before the development of brain 
edema and surges of increased ICP [67]. Furthermore, 
one study using CMD showed that accumulation of 
glutamine in the brain caused by HA correlated with a 
higher lactate–pyruvate ratio in patients with liver failure, 
supporting that there is possibly secondary mitochondrial 
dysfunction with an energy deficit state [95,96]. As cere-
bral and peripheral levels of glutamine do not necessarily 
correlate [41,97], targeting cerebral glutamine remains an 
attractive strategy for the treatment of HA.

CONCLUSIONS AND OUTLOOK

This review highlights a critical knowledge gap in 
the management of acute brain injury in patients with 

that impaired CA in preterm infants may be related to 
developmental delays, poor cognitive outcomes, and 
death [80-82]. HA affects cerebral blood flow by causing 
cerebral dilation [83] and impaired CA has been reported 
in hyperammonemic states [84,85]. A twin case study 
revealed possible impaired CA in a patient with orni-
thine transcarbamylase deficiency when compared to his 
healthy twin sibling [20]. However, further studies are 
needed to elucidate the pathogenesis of impaired CA in 
HA.

Cerebral Microdialysis
Another prospective candidate that can provide in-

sight into cellular metabolism with potential application 
to guide clinical therapy is cerebral microdialysis (CMD) 
(Figure 3). Microdialysis allows to monitor the chemistry 
of the cerebral interstitial fluid continuously [86] and can 
specifically measure the extracellular levels of glutamate, 
glutamine, glucose, lactate, and pyruvate. The use of 
this technique in animal models have allowed a better 

Figure 3. NIRS (A) probes are placed in the scalp, and they transmit infrared light (light source) that passes 
through skin and bone to the tissue. The detectors in the skin probe senses the light that has not been absorbed 
from oxy-hemoglobin and deoxy-hemoglobin and converts this data into a number which indicates the regional tissue 
oxygenation. The monitor shows that the right cerebral hemisphere has a lower oxygen saturation indicating either 
decreased perfusion or increased metabolic demand in that hemisphere. CMD (B) allows semi-continuous monitoring 
of extracellular metabolites. A pump allows constant perfusion of isotonic or colloid-enriched fluid to a tubular semi-
permeable membrane on the tip of the catheter (red circle). All small molecules cross the membrane by diffusion. The 
perfuse or microdialysate is sampled and analyzed for brain extracellular concentrations of glucose, lactate, pyruvate, 
glutamine, and glutamate. A Doppler probe (C) emits ultrasound waves through the skull that are reflected by moving 
red blood cells. The “Doppler shift frequency” or the difference in the frequency between emitted and reflected waves 
is proportional to the blood flow velocity and used as an indirect measure of cerebral blood flow.
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IEMs. Although there are no prospective studies validat-
ing the efficacy of these techniques in patients with IEM, 
advanced neuromonitoring could meaningfully impact 
the current practice in children with IEM in the future. 
We advocate for creating an international registry of 
patients with rare diseases that can cause acute brain in-
jury that includes cerebral, cardiovascular and respiratory 
variables during a metabolic crisis and follow-up metrics 
during scheduled visits. Further research should focus on 
expanding the use of these neuromonitoring techniques 
to develop primary targeted goal-directed therapy against 
HA-induced energy metabolism failure and secondary 
brain injury.
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