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ABSTRACT
Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine

catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and

antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases.

GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit

early onset macrocephaly and may present a neurological deterioration with regression and movement disorder

at the time of a presumably “benign” infection most often during the first year of life. This is associated with a

characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification

of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine

diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures

include administration of L-carnitine associated with emergency measures at the time of intercurrent illnesses aiming

at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term

neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible

disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid

semialdehyde (AASA) and �-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms

a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and

subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25%

of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are

proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1

and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment.

Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear. J Nutr

2020;150:2556S–2560S.
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Introduction
Lysine is an essential amino acid, and inherited diseases of
its metabolism therefore represent defects of lysine catabolism
(Figure 1). Lysine, hydroxylysine, and tryptophan are suppos-
edly chiefly catabolized in the mitochondrion (Figure 2), initially
via separate pathways, which converge into a common pathway
at the point of α-aminoadipic semialdehyde (hydroxylysine
catabolism and pipecolic acid pathway of lysine catabolism)
and at the point of α-ketoadipic acid (tryptophan catabolism;
Figure 1). The major route of lysine catabolism in most tissues
is via the bifunctional enzyme, α-aminoadipic semialdehyde
synthase (AASS; Figure 1, enzyme 1). However, a small amount
of lysine is catabolized in the peroxisome via pipecolic acid by
pipecolic acid oxidase (enzyme 2); although this pathway was
classically regarded as the major route of lysine catabolism in
the brain, recent studies have challenged this dogma (1, 2). These

studies have indeed demonstrated that the major route of lysine
catabolism in the brain was indeed through the saccharopine
pathway (AASS).α-Aminoadipic semialdehyde is converted into
α-aminoadipic acid by α-aminoadipic semialdehyde dehydro-
genase (antiquitin; enzyme 4), which is then converted to α-
ketoadipic acid by α-aminoadipate aminotransferase (enzyme
5). α-Ketoadipic acid is mostly converted to glutaryl-CoA by
the α-ketoglutarate dehydrogenase-like complex (enzyme 6a)
because its E1 subunit (DHTKD1) has a higher substrate affinity
for α-ketoadipic acid than the α-ketoglutarate dehydrogenase
complex in the Krebs cycle (enzyme 6b). α-Ketoadipic acid
is dehydrogenated and decarboxylated to crotonyl-CoA by
glutaryl-CoA dehydrogenase (enzyme 7). This enzyme transfers
electrons to FAD and hence to the mitochondrial respiratory
chain via electron transfer protein (ETF)/ETF dehydrogenase.
We focus on the 2 most well-characterized human inherited
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FIGURE 1 Schematic overview of the lysine, tryptophan, and hydroxylysine catabolism pathway. 1, α-aminoadipic semialdehyde synthase; 2,
pipecolic acid oxidase; 3, hydroxylysine kinase; 4, α-aminoadipic semialdehyde dehydrogenase (antiquitin); 5, α-aminoadipate aminotransferase;
6a, α-ketoglutarate dehydrogenase-like complex using DHTKD1 as E1 subunit; 6b, alternatively, α-ketoglutarate dehydrogenase complex also has
substrate affinity for α-ketoadipic acid; 7, glutaryl-CoA dehydrogenase; 8, short-chain enoyl-CoA hydratase 1 (crotonase); 9, 3-hydroxyacyl-CoA
dehydrogenase; 10, succinate hydroxymethylglutarate-CoA transferase. Enzyme deficiencies are indicated by solid bars.

disorders of lysine catabolism—that is, glutaric aciduria type I
(GA1) caused by deficient glutaryl-CoA dehydrogenase (enzyme
7) and α-aminoadipic semialdehyde (AASA) dehydrogenase
(antiquitin; enzyme 4) deficiency causing pyridoxine-dependent
epilepsy (PDE).
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GA1

GA1 [Online Mendelian Inheritance in Man (OMIM) 231670]
is a rare inherited disorder of lysine, hydroxylysine, and
tryptophan catabolism due to deficiency of glutaryl-CoA de-
hydrogenase resulting in accumulation of glutaryl-CoA and its
dicarboxylic derivatives glutaric acid (GA), 3-hydroxyglutaric
acid(3-OH-GA), glutaconic acid, and glutarylcarnitine in body
fluids and tissues, especially the central nervous system (CNS).
The estimated incidence of GA1 relies on data from Germany
(1 in 112,700 newborns) (3). Between the ages of 3 and 36
mo, most untreated patients develop a complex movement
disorder with predominant dystonia due to bilateral striatal
injury associated with high morbidity and mortality (4–7). This
may occur acutely following an acute encephalopathic crisis
usually triggered by a presumably benign infectious disease or
insidiously (7). Conversely, some individuals may remain free
from symptoms lifelong. Such wide phenotypic heterogeneity
is not well understood and not related to specific genotypes or
level of excretion of toxic metabolites. Likewise, low-excreter
and high-excreter patients have been described according to the
amount of urinary GA, both seemingly sharing the same risk
of developing movement disorder if untreated. Approximately
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half of affected infants exhibit macrocephaly that can be
present from birth (nonfamilial) or progress with time. Brain
MRI is a key diagnostic tool and shows abnormalities even
in asymptomatic individuals—that is frontotemporal atrophy
and white matter lesions without striatal involvement. Striatal
injury (8) with white matter lesions is observed in patients
with movement disorder (acute or insidious) (9). Because
glutarylcarnitine can be detected by tandem mass spectrometry
and early treatment has demonstrated its preventative beneficial
effect, GA1 has been increasingly included in national newborn
screening (NBS) programs. A recent study on patients diagnosed
by NBS showed that deviations from metabolic maintenance
treatment, particularly deviations from low-lysine diet, are the
major risk factor for dystonia of insidious onset (3). GA1
therapy aiming at reducing CNS accumulation of neurotoxic
dicarboxylic metabolites relies on a low-lysine and tryptophan
diet using an amino acid mixture without lysine and trypto-
phan, along with l-carnitine supplementation for maintenance
treatment and emergency treatment during fever episodes (6). If
treated before the onset of irreversible neurological symptoms,
the encephalopathic crises can be prevented in the majority
of children (3, 4). Studies in the glutaryl-CoA dehydrogenase
(Gcdh–/–) mouse have confirmed that lysine is neurotoxic and
that lysine dietary restriction is neuroprotective in GA1 (10). In

addition to the direct toxic effects of accumulated dicarboxylic
acids in the CNS (mainly GA and 3-OH-GA), pathophysiology
may include dicarboxylic metabolites intracerebral trapping
and secondary brain energy mitochondrial defects (11).

PDE (Antiquitin Deficiency)

PDE (OMIM 266100) was initially described as a potential
disorder of the lysine catabolism pathway due to the presence of
elevated pipecolic acid. Subsequently, the defect in this pathway
was identified as a deficiency of antiquitin (likely mitochondrial
enzyme, α-AASA dehydrogenase encoded by ALDH7A1) (12),
leading to the accumulation of α-AASA and �-1-piperideine-
6-carboxylate (P6C) (Figure 2). Accumulated P6C complexes
with pyridoxal phosphate (PLP) and decreases PLP function
by drastically limiting its bioavailability. PLP is the vitamin B6
(pyridoxine) vitamer acting as a cofactor for numerous enzymes,
especially CNS-functioning ones. Therefore, inactivation of PLP
causes epilepsy that is treatable by pharmacological doses of
pyridoxine. Elevated urinary AASA is a more reliable biomarker
for PDE than elevated blood pipecolic acid; importantly, urinary
AASA remains elevated after initiation of pyridoxine treatment
(13).

FIGURE 2 ALDH7A1 deficiency or antiquitin deficiency or PDE: a defect of the lysine catabolism pathway. PDE is caused by a defect of
AASDH (solid bar) with subsequent upstream accumulation of AASA and P6C. The latter forms a complex with PLP, thereby drastically limiting
PLP bioavailability with further impacts on PLP-dependent enzymes. The asterisks indicate that antiquitin (AASDH, ALDH7A1) and AADAT
are classically shown as cytosolic enzymes. However, there is evidence that both enzymes also have a mitochondrial localization [most likely
dual cytosol and mitochondrial localization (14, 15)]. AAA, α-aminoadipate; AADAT, α-aminoadipate aminotransferase; AASDH, α-aminoadipate
semialdehyde dehydrogenase; AASS, α-aminoadipate semialdehyde; AKAA, α-ketoadipate; PDE, pyridoxine-dependent epilepsy; PLP, pyridoxal
phosphate; POX, L-pipecolate oxidase; PYRC, pyrroline-5-carboxylate reductase; P6C, �-1-piperideine-6-carboxylate; TCA, tricarboxylic acid.
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Since the identification of its molecular basis, the clinical
spectrum of antiquitin deficiency has widened from abnormal
fetal movements and a multisystem neonatal disorder to onset
of seizures and autistic features after the first year of life (16,
17). The most typical clinical picture is that of a neonatal
seizure disorder refractory to conventional antiepileptic drugs
and responsive to pyridoxine. However, clinical response
to pyridoxine may remain partial and delayed. Seizures of
patients with ALDH7A1 deficiency are usually controlled on
pyridoxine monotherapy in ∼90% of cases; however, ≥75% of
children have intellectual disability and developmental (speech)
delay despite, and independent of, prompt pyridoxine therapy
initiated in the neonatal period (18). Two additional therapeutic
options have been trialed in relatively small numbers of patients.
The first approach is a lysine-restricted diet to lower potentially
toxic AASA concentrations (19). The second is the use of
arginine, which competes with lysine in the process of transport,
thereby reducing its intestinal absorption and transport into
the brain at the blood–brain barrier (20). “Triple therapy”
(pyridoxine and arginine supplementation, lysine restriction)
is probably a suitable option because it clearly appears that
these treatments allow a decrease in the putatively toxic
metabolites and biomarkers in body fluids including CNS along
with most often short-term neurodevelopmental improvements
(21, 22). Optimum results were reported for patients for
whom treatment was started early; however, larger cohorts
and longer term data with extensive neurocognitive testing are
mandatory.

The key role of the saccharopine pathway in whole-
body [especially the brain (2)] lysine catabolism opens new
therapeutic avenues for PDE. In particular, inhibition of this
pathway upstream of AASA/P6C synthesis may prevent AASA
accumulation, thus benefiting PDE patients.

Future Directions

Hyperlysinemia caused by mutations in AASS encoding for the
bifunctional AASS (Figure 1, enzyme 1), the first enzyme in
the lysine degradation pathway (23), is generally considered
as a benign metabolic variant and a nondisease without overt
clinical consequences (24). More recently, NADK2 deficiency
(mitochondrial NAD kinase deficiency; OMIM 615787) was
identified by whole-exome sequencing in patients exhibiting
a mild to severe neurodevelopmental phenotype with hyper-
lysinemia with or without accumulation of C10:2-carnitine (25–
27). It was shown that NADK2 produces NADPH, which acts
as a molecular chaperone activating and stabilizing AASS and
dienoyl-CoA reductase (DECR). Although the clinical spectrum
and pathophysiology of NADK2 deficiency remain to be further
defined, the severe neurometabolic NADK2 phenotype does not
seem to be related to hyperlysinemia nor DECR deficiency but,
rather, to the dysfunction of mitochondrial NADPH-dependent
pathways.

Conclusions

Lysine-related inborn errors of metabolism comprise 2 main
entities, GA1 and PDE, which are both amenable to efficacious
therapy: lysine/tryptophan-restricted diet along with l-carnitine
supplementation in GA1 and pyridoxine in PDE. In both
disorders, lysine plasma concentration is not elevated. The role
for lysine-restricted diet and arginine therapy in PDE remains to

be further studied in larger cohorts of patients, but preliminary
data provide promising insights on its beneficial clinical
impact.
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