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Abstract

Newborn screening (NBS) is an important secondary prevention program, aiming

to shift the paradigm of medicine to the pre-clinical stage of a disease. Starting more

than 50 years ago, technical advances, such as tandem mass spectrometry (MS/MS),

paved the way to a continuous extension of NBS programs. However, formal evi-

dence of the long-term clinical benefits in large cohorts and cost-effectiveness of

extended NBS programs is still scarce. Although published studies confirmed impor-

tant benefits of NBS programs, it also unraveled a significant number of limitations.

These include an incompletely understood natural history and phenotypic diversity

of some screened diseases, unreliable early and precise prediction of individual dis-

ease severity, uncertainty about case definition, risk stratification, and indication to

treat, resulting in a diagnostic and treatment dilemma in individuals with ambigu-

ous screening and confirmatory test results. Interoperable patient registries are

multi-purpose tools that could help to close the current knowledge gaps and to

inform further optimization of NBS strategy. Standing at the edge of introducing

high throughput genetic technologies to NBS programs with the opportunity to

massively extend NBS programs and with the risk of aggravating current limitations

of NBS programs, it seems overdue to include mandatory long-term follow-up of

NBS cohorts into the list of screening principles and to build an international

collaborative framework that enables data collection and exchange in a protected

environment, integrating the perspectives of patients, families, and the society.
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1 | NEWBORN SCREENING:
SHIFTING THE TRADITIONAL
PARADIGM OF MEDICINE

The traditional concept of medicine is based on the clini-
cal phenotype. The major advantage of this concept lies

in the certainty that the symptomatic individual (hence
termed patient) is affected by a disease. The major disad-
vantages, particularly for rare genetic diseases, can be
seen in the often time-consuming path to diagnosis, late
introduction of specific treatment, and thus the limited
ability to prevent irreversible harm. Diagnostic biomarkers,
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which allow to identify affected individuals already during
a pre-clinical stage, have become the prerequisite of screen-
ing programs, shifting the traditional paradigm of medi-
cine. Especially newborn screening (NBS) programs have
the potential to identify individuals with rare treatable con-
ditions at an early stage, to prevent a diagnostic odyssey, to
shorten the time to introduction of disease-changing thera-
pies, and to improve health, development, and life expec-
tancy. Therefore, they are considered an important measure
of secondary disease prevention and as one of the greatest
advances of modern public health with significant individ-
ual, socio-economic, and societal benefits.1 NBS programs
were initiated more than 50 years ago, starting with phenyl-
ketonuria (PKU) as the first target disease subsequent
to the development of a semi-quantitative bacterial inhibi-
tion assay2 and a disease-changing dietary treatment.3 The
success of PKU screening and subsequent technological
advances, such as tandem mass spectrometry (MS/MS)4–7

and genetic screening tests,8 enabled the extension of NBS
disease panels to a growing spectrum of inherited metabolic
diseases (IMDs), endocrine, immunologic, hematological
and neurological diseases, and other complex disorders
such as cystic fibrosis.

Although existing NBS programs still claim to refer to
a set of 10 principles for population screening drafted by
Wilson and Jungner in 19689 and international efforts
have been made to develop NBS programs toward a har-
monized panel and system,10–12 the interpretation of the
original screening principles has remained controversial
at the level of national policy, resulting in a highly vari-
able composition of national NBS disease panels.13–15 As
a consequence, a revision and further extension of the
original screening principles as well as the introduction
of transparent and objective decision tools for the selec-
tion of candidate diseases have been proposed.16,17 Stand-
ing at the edge of introducing large-scale sequencing
technologies for the screening of genetic conditions this
revision is overdue.18,19

2 | CHEMICAL INDIVIDUALITY
AND PHENOTYPIC DIVERSITY

New diagnostic opportunities are accompanied by new
challenges. An intrinsic challenge of all NBS programs is
to identify asymptomatic individuals at risk of a specific
disease using biomarkers and to clearly distinguish
“physiologic” from “pathologic” conditions. In an ideal
world, these biomarkers would be accurate enough for
clinicians to provide clinical judgment, particularly since
early introduction of treatment aims at preventing or at
least delaying or attenuating the disease manifestation.
In the real world, there is a fluid transition between

unaffected individuals and those with an attenuated phe-
notype20 as well as a weak correlation between the con-
centration of some biomarkers and the assumed disease
severity.21 With the introduction of the concept of chemi-
cal individuality in 1902, Sir Archibald Garrod already
highlighted this diagnostic challenge long before NBS
programs were conceptualized and implemented, recog-
nizing that the individual variation of detectable metabo-
lites reflects the evolutionary need for adaptive variability
but does not necessarily indicate a predisposition to dis-
ease.22 Today, the concept of chemical individuality has
been significantly extended with the increasing under-
standing of the (human) metabolism by integration of
gene–environment and gene–nutrient interactions, involve-
ment of other metabolic pathways and modifier genes,23–25

side reactions of enzymes, and the metabolic proof machin-
ery.26,27 In addition, holo-genomic metabolic cooperation
between humans and bacteria28,29 unravels humans to be
metabolic holobionts and shifts IMDs from monogenic to
complex diseases.30 These complex mechanisms not only
explain biochemical individuality but also underlie clinical
diversity. Since the relationship between genotype, metabo-
lite profile and clinical phenotype might be complex, early
phenotypic prediction has remained imprecise for many
diseases,21,31,32 while it is more successful for others.33–35

As a consequence, the success of NBS programs criti-
cally depends on the precise knowledge about chemical
individuality, gene variations, and phenotypic diversity of
screened diseases. For instance, individuals with phenylal-
anine hydroxylase-induced mild hyperphenylalaninemia
do not require treatment, unlike those classified to have
PKU.36,37

To increase methodological accuracy and reduce diag-
nostic uncertainty of NBS test results significant improve-
ments have been made, such as the identification of
objective target ranges for more than 100 biomarkers to
be applied for NBS,38 the application of feature construc-
tion methods to disclose information hidden in the whole
set of measured values,39 and the development of bio-
chemical and genetic two- or multiple-tier strategies.40

Despite these efforts, the vast MS/MS-based extension of
NBS programs has revealed significant knowledge gaps,
such as (1) the incomplete understanding of the natural
history and phenotypic variations of some screened
diseases,41-43 (2) the unreliable early prediction of the
individual disease severity,44 (3) the uncertainty about
exact case definition,43,45 (4) the ambiguity concerning
individual risk stratification and indication to treat,46,47

and (5) the lack of clarity of long-term benefits of
extended NBS programs concerning individual health,
health economics, and the society.42,48 Positively speak-
ing, NBS can serve as a major stimulus for rapidly expan-
ding knowledge, compared to the pre-MS/MS period.49
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To overcome the shortcomings and to continue the suc-
cess story of NBS systematic long-term observation of
NBS cohorts and a careful evaluation of benefits and lim-
itations of NBS programs under real-world conditions are
important measures. However, despite this obvious need,
and because of their high costs, longitudinal observa-
tional studies have remained the neglected part of NBS
programs. Formal evidence of the clinical effectiveness
and long-term benefits of MS/MS-based NBS in large
cohorts with longer follow-up,42,43,50–52 cross-sectional
analysis of patient registries managed by transnational
scientific consortia,53–59 or from meta-analysis60 is still
scarce. Current knowledge is mostly based on short-term
follow-up of small- or medium-sized regional cohorts.51,61–69

In the following, we will discuss major lessons learned from
longitudinal observational studies and how they can guide
NBS strategy.

3 | LESSONS LEARNED FROM
LONG-TERM OBSERVATION OF
NEWBORN SCREENING COHORTS

3.1 | The phenotype follows a
continuous spectrum

More than 20 years after the start of MS/MS-based NBS
programs, a clear-cut case definition is still missing for
several screened diseases and disease variants, exposing
these individuals and their families to the potential
health risk of over- and under-treatment, prognostic
uncertainty, stigmatization, and accompanying distress
and disruption of family life.

Assuming that the severity of the clinical phenotype
of an individual with a genetic disease, such as an IMD,
ranges within a continuous spectrum,20 any dissection of
this continuum into “severe,” “moderate/intermediate,”
and “mild/attenuated” phenotypes, or “early/neonatal
onset” and “late onset” must be artificial. Despite its
intrinsic imprecision, this concept is useful for risk strati-
fication and clinical decision-making and, therefore, is
often utilized.43,53,57,70,71 This concept however, contains
pitfalls and the potential for misunderstandings. For
instance, the term “mild” may indicate an individual
with a biochemical variation without indication to treat,
for example, mild hyperphenylalaninemia, or an individ-
ual who may succumb to death during a metabolic
decompensation, for example, late-onset ornithine trans-
carbamylase deficiency.72,73 However, sometimes “mild”
simply indicates uncertainty about the clinical signifi-
cance of a condition. For mild isovaleric aciduria (IVA),
which has remained unknown in the pre-NBS era, there
is ongoing debate about its clinical significance since the

first description of a genetic variant.41 A recent national
long-term outcome study not only showed this disease
variant to be most prevalently found, but also demon-
strated a normal neurocognitive development without
occurrence of metabolic decompensations.43 Further-
more, it is still difficult to unambiguously distinguish
between “mild” and “classic” IVA cases based on bio-
chemical and genetic test results.43 In analogy to IVA, an
increased frequency of attenuated phenotypes has also
been found in long-chain acyl-CoA dehydrogenase defi-
ciency and other IMDs since their inclusion into NBS
programs.74,75

The shift from severe to attenuated phenotypes in
NBS cohorts also entails the risk of over-estimating the
health impact of NBS programs since the case mixes of
NBS and pre-NBS cohorts do not necessarily match. A
recent collaborative study has highlighted this problem
and has demonstrated a feasible strategy for severity-
adjusted evaluation of NBS programs.76 Utilizing a previ-
ously established functional disease prediction model for
citrullinemia type 1 and argininosuccinic aciduria,34,35

which integrates longitudinal follow-up data and patient-
related in vitro residual enzyme activities, the authors
showed the disease severity of the NBS cohort to be lower
than of the pre-NBS cohort. Regardless of this difference,
NBS and early start of treatment reduced the initial peak
plasma ammonium concentration before start of treat-
ment, particularly in individuals with an attenuated phe-
notype, but did not reduce the frequency of subsequent
hyperammonemic episodes at least with a conservative
treatment.76 Utilizing data from multiple sources, this
study highlights the need for accurate and severity-
adjusted case definitions and the importance of well-
characterized longitudinally followed patient cohorts. In
the future, multi-omics data and artificial intelligence-
supported diagnostic pathways might help to overcome
the current limitations of case definition and risk
stratification.77

3.2 | To treat or not to treat? And how?

The aforementioned uncertainty about case definition
results in a treatment dilemma. Both the decision to treat
or not to treat might harm the individual, either because
of adverse effects of unnecessary treatment or the missed
opportunity to prevent irreversible disease manifestation
in untreated individuals (Figure 1). To aggravate this
problem, randomized controlled trials are challenging in
rare disease settings and thus are still scarce.78 Further-
more, clinical outcomes and outcome measurement
instruments often vary greatly in the conducted rare dis-
ease trials.79 This hampers the comparison of results and
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the achievement of robust evidence and underlines the
need for the development of core outcome sets as recently
published for PKU and medium-chain acyl-CoA dehydro-
genase deficiency (MCADD).80,81

Longitudinal follow-up of NBS cohorts with careful
evaluation of prescribed treatments can fill this important
gap, preferentially if combined with systematic evalua-
tion of literature and guideline development. Thus all-
owing the evaluation of feasibility and health impact of
recommended therapy under real-world conditions and
gradually improving the evidence level and feasibility of
recommendations in an iterative way. A successful exam-
ple of this approach is glutaric aciduria type 1 (GA1). It is
prognostically most important disease manifestation
being infantile-onset dystonia due to acute- or insidious-
onset striatal damage.21,82 When first NBS pilot studies
and national NBS programs included GA1 in the late
1990s, it was still unknown whether the natural history
of this disease could be improved by available therapies.
In fact, a meta-analysis on studies reporting 115 symp-
tomatically diagnosed patients concluded that “treatment
given after the appearance of symptoms was not associ-
ated with a better clinical outcome.”83 Although it was
hoped that pre-symptomatic start of treatment might pre-
vent the onset of symptoms, it was not before MS/MS-
based NBS started that this could be proven.21,82 This has

been the starting point for international guideline devel-
opment, evaluating available evidence and prioritizing
the multitude of knowledge gaps,84 and for a set of long-
term observational studies whose major results were used
for subsequent guideline revisions.85,86 By this iterative
approach transient emergency treatment during putatively
threatening catabolic episodes was shown to be the most
effective measure to avoid (acute-onset) dystonia87–89 and
carnitine supplementation to reduce mortality, while no
evidence supported a positive effect of riboflavin supple-
mentation.21 Furthermore, untreated individuals with
the high and low excreter phenotype of GA1 were both
shown to have a high risk to develop irreversible striatal
damage,21 excluding the misconception of low excreter
patients to have an attenuated phenotype. The most diffi-
cult part was to find solid evidence for the impact of die-
tary treatment on the outcome. It took several years to
demonstrate superiority of low lysine diet with lysine-free,
arginine- and tryptophan-enriched amino acid supple-
ments over low protein diet.87,90 Almost 20 years later,
there is now solid evidence that GA1 is a treatable NBS
condition. Recommended treatment, if introduced and
monitored by an experienced multi-professional team, is
safe and the major prerequisite of good neurological out-
come, while deviation from recommended treatment
increases the risk of striatal damage,50,87,90,91 highlighting

FIGURE 1 Uncertainty about case definition results in a treatment dilemma. Ideally, NBS clearly identifies individuals with increased

health risks and distinguishes them from those without. A clear-cut case definition guides the decision to treat (in individuals at risk, best

case 1) or not to treat (in individuals not at risk, best case 2). Without a clear-cut case definition, healthcare providers are likely to start

treatment to prevent irreversible physical and/or cognitive disability in individuals at risk (worst case); however, this is done at the cost of

potentially harming individuals with benign variants through adverse physical effects and psychological burden of non-indicated therapy

(second-worst case).
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the importance of the quality of therapy.60 Some lately rec-
ognized aspects of the disease, however, such as chronic
kidney disease,50 progressive white matter changes,92,93

and slightly reduced IQ in high excreters,91 do not seem to
be impacted by currently available therapies. Besides GA1,
this iterative approach of longitudinal observational stud-
ies conducted by international scientific consortia and con-
comitant guideline development is also successfully
applied to other IMDs, such as methylmalonic and
propionic aciduria,53,94–96 urea cycle disorders,57,58,97

cystathionine beta-synthase deficiency,98 remethylation
disorders,54,99,100 and tetrahydrobiopterin deficiencies.56,101

The GA1 example also highlights another important
aspect for guiding future extension strategy for NBS pro-
grams. Without inclusion of GA1 to NBS pilot studies or
NBS programs before having ample evidence that it is a
treatable condition the above-described success story
would have been inconceivable if not impossible. This
stresses the need for conducting pilot studies on candi-
date diseases with a high potential to be included in NBS
programs. One of these candidates is neonatal vitamin
B12 deficiency due to undiagnosed and hence untreated
maternal vitamin B12 deficiency. Pilot NBS studies on
neonatal vitamin B12 deficiency confirmed the feasibility
of a combination of previously described second-tier
strategies40,102–104 as well as the positive impact of early
treatment on the neurological outcome.45 The opportu-
nity to prevent irreversible harm in the affected neonate,
its mother, and potentially younger siblings let neonatal
vitamin B12 deficiency appear as very promising NBS
candidate. But again, clear-cut case definition appears to
be a weak point. Although it is unlikely that all screened
individuals with neonatal vitamin B12 deficiency would
develop neurologic symptoms during infancy without
treatment, there is currently no known evidence-based
stratification that would allow to distinguish individuals
who would benefit from transient treatment from those
who would not. Since this distinction is influenced by
environmental factors, observational studies unlike in
genetically defined IMDs might not be analogously helpful
for this disease to improve the case definition and indica-
tion to treat unless additional data sources, such as nutri-
tion and the microbiome, are integrated into analysis.

3.3 | Time is health: Every day counts

Extended NBS programs include a growing number of
IMDs with a risk of neonatal metabolic decompensation
pointing on the need for a timely NBS. A recent study
has demonstrated that 28 of 191 (14.7%) screened individ-
uals at risk, did actually experience a neonatal metabolic
decompensation (median age, 4 days) before the NBS

result was known. Fortunately, experiencing a neonatal
metabolic decompensation did not necessarily predict a
poor long-term health outcome.42 Noteworthy, none of
the neonatal decompensations occurred after the report
of a positive NBS result. This highlights the need for
excellent diagnostic process quality of extended NBS pro-
grams. To achieve this goal, many countries have already
shortened the recommended time to NBS sampling.
However, improving diagnostic process quality requires
the careful evaluation of the NBS program as a complex
multi-step system, including the performance of the senders
(e.g., hospitals), the carriers (mail services), and the recipi-
ents (NBS laboratories) of the NBS sample (Figure 2). A
recent evaluation of the NBS process quality in Southwest
Germany unraveled improved performance of hospitals and
NBS laboratories but increasing shipping intervals (i.e.
>48 h). Theoretically, about 25% of acute metabolic decom-
pensations before the first NBS reports could have been
prevented by a first NBS report on day 5, as required by the
German NBS directive.42 However, this improvement would
still not allow to prevent some fatal neonatal decompensa-
tions, such as in MCADD.105 Because of the above-discussed
limitations, there is still uncertainty about the inclusion of
other intoxication type IMDs with a supposedly high fre-
quency of individuals with neonatal onset, such as met-
hylmalonic and propionic aciduria, and urea cycle
disorders.106 Analysis of an international cohort of intoxica-
tion type IMDs unraveled significant disease-specific varia-
tions in the proportion of individuals with disease onset
during (EO group) and after (LO group) the neonatal period
and the proportion of individuals who could have been iden-
tified before the onset of first symptoms.53,57 In the group of
organic acidurias, NBS was shown to clearly reduce the time
to diagnosis for GA1 and IVA, while NBS for methylmalonic
and propionic aciduria shortened the diagnostic pathway
only for the LO group of patients. It was estimated that 78%
(disease-specific range, 62%–98%) of individuals with organic
acidurias and 70% (disease-specific range, 33%–100%) of
those with urea cycle disorders could have been identified
pre-symptomatically by NBS within the first week of life.53

Even if we assume that this cohort, like that of other patient
registries, under-represents individuals with a severe pheno-
type to some extent,70 these results suggest that an extension
of NBS programs to these disease groups might be feasible
and could result in a health benefit, particularly for individ-
uals of the LO group.53,57,58,76,107

3.4 | Limitations and benefits of NBS:
Integration of different perspectives

From the bird's-eye view, screened individuals with IMDs
have excellent health outcomes, confirmed by a high

MÜTZE ET AL. 5



frequency of normal development and normal cogni-
tive outcome (95%), and a high proportion of screened
individuals without permanent disease-specific symp-
toms until last visit (76%).42 If we dig deeper, we soon
identify disease-specific variations and limitations that
highlight the need for further optimization on a broad
range of aspects. Individuals with maple syrup urine
disease, GA1, IVA, and other IMDs might not benefit
from NBS in the same way as those with PKU and bio-
tinidase deficiency since some of them might have been
missed by NBS, might have developed symptoms before
the NBS test results or since available treatments are
not effective to prevent the progression of the disease42

or are invasive such as liver transplantation.96 Addi-
tionally, we could easily over-estimate the health
benefits of NBS programs if case mixes and outcomes
of NBS and pre-NBS cohorts were not compared
within the same country and national health ser-
vice10,52,69,76,88,90,108–111 and if analyses were made
without consideration of the predicted clinical pheno-
type of screened individuals.42,58,76

Furthermore, the perspectives of patients and their
families have to be included into the analysis. Healthcare
professionals may still under-estimate that NBS and early
treatment, although leading to favorable physical and
cognitive outcome, may put significant stress on patients
and families because of the life-long risk of decompensa-
tions and the need to adhere to burdensome therapies,112

not to mention the negative psychological effects of
false-positive NBS results on family life and parent–child
interaction.113,114 Therefore, parent- and patient-reported

outcome and experience measures should be integrated
to understand patient and family expectations and cur-
rent limitations of NBS programs.

FIGURE 2 The newborn screening (NBS) program is a multi-step system. Every chain is as strong as its weakest link. NBS integrates

various successive steps conducted by different professions in a coordinated way. Concerted action is required to minimize the risk of delay,

confusion of sample, and incorrect test results. Combined evaluation of diagnostic process quality and long-term clinical outcomes of

screened individuals is a prerequisite for continuous optimization of this complex process.

FIGURE 3 Iterative cycle of optimizing newborn screening

(NBS) programs through observational studies. Real-world data

obtained from longitudinal observational studies provide robust

information about current limitations and benefits of the single

steps of NBS programs and the programs as a whole, as well as the

feasibility, safety, and efficacy of therapy and care. These data

inform screening strategy and guideline development in an iterative

way, enabling optimization through continuous evaluation and

adaptation.
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Besides the individual health benefit, NBS programs
should be feasible and reasonable for the screened popu-
lation, their societies, and healthcare systems.9 Costs for

screened clinical courses and establishing and maintaining
adequate infrastructures have to be compared to
unscreened clinical courses110,115,116 and correlated to the

TABLE 1 Summary of the (possible) impact of integrated long-term observational studies on newborn screening (NBS) programs as an

11th screening principle

Goal Data from long-term observation Impact on NBS programs

Clear-cut case definition Prediction of the clinical case in the
presymptomatic state by integration
of biochemical, enzymatic genetic,
natural history, and long-term
observational data of NBS cohorts

• Early identification and therapy of true positive patients with
high risk for a severe disease course

• Reducing the harm on individuals and families by reducing
the number of false positives and/or benign disease courses

• Development of diagnostic guidelines

Overcome the treatment
dilemma (Figure 1)

Long-term observational data
including treatment data of NBS
cohort

Randomized treatment studies in NBS
cohorts

• Stratified treatment of severe and attenuated clinical
phenotypes

• Reduction of overtreatment in individuals with attenuated or
benign phenotypes identified by NBS

• Development of stratified treatment guidelines

Optimize NBS process NBS process data combined with the
long-term clinical outcome

• Harmonization and optimization of the age at NBS sample
and the NBS as a process in regard to the infrastructural
possibilities

• Further reduction of neonatal metabolic decompensations in
NBS conditions

• Evaluation of the impact of pre-NBS report metabolic
decompensation on the outcome

Expand NBS programs Measures on the analytical and
structural NBS process of new
conditions

Accompanying measures of the
clinical and cognitive outcome

Accompanying measures of the
treatment

• Implementation accompanying evaluation of new NBS
condition

• Reevaluation of implemented NBS conditions
• Generating data to eliminate unsuccessful conditions from

national NBS panels

Reduce family burden Combination of the above mentioned • Reducing harm of false positive results
• Improving counseling of confirmed cases by better prediction

of the clinical course
• Early effective treatment of the severly affected
• Reduction of overtreatment in attenuated and benign

phenotypes
• Clustering the medical care in specialized interprofessional

centers

Societal benefit National NBS costs for the health care
system and long-term observational
data (clinical and cognitive)
including educational and
socioeconomic data to calculate the
savings for the health care system
due to prevention of the severe
natural history (severe disability) of
the disease.

Data on treatment costs
Extrapolation of societal savings and
profits by an unaffected societal
participation of the affected
individuals

• Cost–benefit evaluation of the NBS program

Interoperable data
analysis

Core data sets for screening, outcome,
treatment

• Interoperability of different registries to enable combined
evaluation to face the rareness of the included diseases

Interoperable networks Combined data analysis, FAIR
principles

• Combined evaluations especially for extreme-rare screening
conditions by cooperation in international scientific consortia
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further costs or savings for the society. To generate this
data, education, employment, parenthood, and possible
implications of the disease on pregnancies have to be
recorded and evaluated in adult IMD cohorts.117,118 Fur-
thermore, different treatment options and adherence rates
need to be considered in economical evaluations. For
instance, a recent study demonstrated that NBS for PKU
was cost-effective with low phenylalanine diet even if
adherence rates were lower than previously assumed, but
not with sapropterin dihydrochloride medication.119 In
analogy, the implementation of highly costly gene thera-
pies and other advanced therapy medicinal products for
(future) NBS target diseases will require a careful evalua-
tion of economic consequences from a societal perspective,
particularly if other therapies are already available. In con-
clusion, fair evaluation of NBS programs is a true chal-
lenge and can succeed only if (1) NBS is understood as a
complex system, (2) meaningful indicators and endpoints
are chosen, (3) robust clinical health data from NBS and
pre-NBS cohorts are available, and (4) different perspec-
tives are integrated into the analysis.

4 | OUTLOOK: MAXIMIZE
BENEFIT AND MINIMIZE HARM
THROUGH LONGITUDINAL
OBSERVATIONAL STUDIES

It is recognized that “all screening programs do harm;
some do good as well, and, of these, some do more good
than harm at reasonable cost.”48 It is therefore important
to acknowledge this at the outset so that we might act
cautiously when planning further extensions of NBS pro-
grams and work tirelessly to improve the quality of those
that already exist.

Despite their extreme high cost, long-term observa-
tional studies using patient registries are multi-purpose
tools for rare disease research and guiding screening strat-
egy. Since long-term data for a rare disease might not be
assessable or very limited prior to the planned extension of
NBS programs, premature decisions on the implementa-
tion of new NBS diseases potentially cause a treatment
dilemma for individuals identified by NBS (Figure 1).
Therefore, a concomitant evaluation of NBS programs by
long-term observational studies seems to be indispensable
to continuously fill the knowledge gaps and optimize the
NBS program in an iterative way (Figure 3), comparable to
the indispensable post-authorization safety studies for
drugs.120 As a consequence, we propose to add an 11th
screening principle to the original list9: “Cohorts of indi-
viduals identified by NBS should be systematically
followed.” A follow-up of screened individuals would help
(1) to better understand the natural history and

phenotypic diversity of rare diseases, (2) to early and pre-
cisely predict individual disease courses, (3) to reduce the
uncertainty about case definition, risk stratification, and
indication to treat, and (4) to evaluate the individual
health benefits as well as the economical and societal ben-
efits of NBS programs (Table 1). This can also be a cost-
saver in the long run (Table 1).

The future success and further optimization of NBS
programs therefore depend on the establishment and
maintenance of an international collaborative framework
that enables long-term data collection of screened indi-
viduals and data exchange in a protected environment.
Particularly paying attention to compliance with ethical
and legal requirements, such as the general data protec-
tion regulation (GDPR, https://gdpr.eu), and the FAIR
data principles, which are indispensable to make collected
data findable, accessible, interoperable, and reusable
(https://www.go-fair.org/fair-principles/), and integrating
the perspectives of patients, families, and the society. The
most efficient and feasible way to achieve this goal is the
development of a federated network of existing registry
infrastructures with suitable design, such as regional and
national observational studies of NBS cohorts,13,42,121 and
the official registry of the European Reference Network
MetabERN (U-IMD100;), and to agree on a limited subset
of meaningful core outcome sets. If we establish this col-
laborate NBS framework, we would overcome the current
data fragmentation and duplication, uncoordinated paral-
lel activities and research in small sample sizes, and other
limitations that still hamper rare disease research and pro-
gress. For rare disease research, the world may be not
enough.
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