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Glutaric aciduria type I is an inherited defect in L-lysine, L-hydroxylysine and L-tryptophan degradation caused
by deficiency of glutaryl-CoA dehydrogenase (GCDH). The majority of untreated patients presents with
accumulation of neurotoxic metabolites – glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) – and striatal
injury. Gcdh−/− mice display elevated levels of GA and 3-OH-GA but do not spontaneously develop striatal
lesions. L-lysine-enriched diets (appr. 235 mg/d) were suggested to induce a neurological phenotype similar to
affected patients. In our hands 93% ofmice stressed according to the published protocol remained asymptomatic.
To understand the underlying mechanism, we modified their genetic background (F1 C57BL6/Jx129/SvCrl) and
increased the daily oral L-lysine supply (235–433mg).We identified threemodulating factors, (1) gender, (2) ge-
netic background, and (3) amount of L-lysine. Malemice displayed higher vulnerability and inbreeding for more
than two generations as well as elevating L-lysine supply increased the diet-induced mortality rate (up to 89%).
Onset of first symptoms leads to strongly reduced intake of food and, thus, L-lysine suggesting a threshold for
toxic metabolite production to induce neurological disease. GA and 3-OH-GA tissue concentrations did not cor-
relate with dietary L-lysine supply but differed between symptomatic and asymptomaticmice. Cerebral activities
of glyceraldehyde 3-phosphate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and aconitase were
decreased. Symptomatic mice did not develop striatal lesions or intracerebral hemorrhages. We found severe
spongiosis in the hippocampus of Gcdh−/−micewhichwas independent of dietary L-lysine supply. In conclusion,
the L-lysine-induced pathology in Gcdh−/− mice depends on genetic and dietary parameters.

© 2014 Published by Elsevier B.V.
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1. Introduction

The mitochondrial homotetrameric flavoprotein glutaryl-CoA dehy-
drogenase (GCDH, EC 1.3.99.7) is required for oxidative decarboxylation
of glutaryl-CoA to crotonyl-CoA in the final degradative pathways of the
amino acids L-lysine, L-hydroxylysine, and L-tryptophan [1–3]. Quantita-
tively, L-lysine is the major precursor of glutaryl-CoA. Autosomal reces-
siveGCDHdeficiency due to twodisease-causingmutations in theGCDH
gene (gene map locus: 19p13.2) causes glutaric aciduria type I (GA-I), a
cerebral organic aciduria biochemically characterized by accumulation
of the dicarboxylic metabolites glutaryl-CoA, glutaric acid (GA), 3-
hydroxyglutaric acid (3-OH-GA), and glutarylcarnitine (C5DC) [4,5].
Two biochemical groups – so-called high and low excreters – have
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been arbitrarily delineated based on highly variable GA excretion in
patients with or without residual enzyme activity [6,4,7]. The overall
estimated incidence of GA-I is about 1 in 100,000 newborns [8], but
might be as high as 1 in 200 newborns in high-risk populations [9–13].

Patients are usually asymptomatic at birth or showminor symptoms
such as axial muscular hypotonia or asymmetric posturing but if un-
treated are at high risk to develop irreversible striatal injury between
age 3 to 36 months [14,15] and, subsequently, a complex movement
disorder with predominant secondary dystonia superimposing on
axial hypotonia [16–18,12]. The onset of striatal injury often manifests
acutely during an acute encephalopathic crises which is precipitated
by catabolism due to infectious diseases, however,may also occur insid-
iously without such crises [19,20]. There is no known genotype–pheno-
type correlation [21]. The natural historymay be highly variable, even in
siblings and in patients with the same GCDH gene mutations [8] sug-
gesting an impact of modifier genes and environmental factors on the
clinical phenotype. Theonly known correlation is between the genotype
and the biochemical phenotype [7]. Patients with a low excreting phe-
notype due to high residual GCDH activity have the same risk for
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022
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developing striatal injury as high excreting patients with complete loss
of GCDH activity [17]. This is puzzling since at high concentrations
glutaryl-CoA, GA, and 3-OH-GA become neurotoxic via inhibition of 2-
oxoglutarate dehydrogenase complex [22] and the dicarboxylic acid
shuttle [23,24] as well as stimulation of N-methyl-D-aspartate receptors
[25], and increased production of reactive oxygen species [26,27]. The
striking similarity in the disease course of high and low excreters was
suggested to be due to similarly high cerebral concentrations of GA
and 3-OH-GA concentrations in both patient groups [28–32]. Cerebral
entrapment of these dicarboxylic acid in the brain compartment occurs
due to a lacking high capacity transport system for dicarboxylic acids in
the blood–brain barrier (BBB) [21,33,34].

Striatal injury can be prevented in the majority of patients by
early identification by newborn screening and immediate start of a
combined metabolic treatment with low L-lysine diet, carnitine sup-
plementation and intermittent glucose infusion or carbohydrate-
rich, L-lysine-free diet during episodes that are likely to induce catab-
olism [35–43]. Low L-lysine diet and glucose infusion are thought to
be most effective in lowering cerebral concentrations of GA and 3-
OH-GA [44]. This effect was also demonstrated in Gcdh−/− mice
[45,46], a transgenic animal model for GA-I with complete loss of Gcdh
activity biochemically resembling patients with a high excreting pheno-
type [47,33]. Supplementation with L-arginine (or homoarginine) which
competes with L-lysine for transport across biological membranes such
as the BBB (CAT1 transporter) and the inner mitochondrial membrane
(ORNT1 transporter) further reduces the cerebral L-lysine influx and
thus decreases the cerebral concentrations of GA and 3-OH-GA [45,46].
In analogy, complementary dietary treatment using L-lysine-free,
arginine-fortified amino acid mixtures has been associated with a
favorable outcome in prospectively followed newborn screening cohorts
[38,48].

Gcdh−/−mice on a C57BL/6Crl × 129/SvCrl background do not spon-
taneously develop a neurological phenotype resembling GA-I, nor can it
be precipitated by various means of inducing catabolism [47]. Exposure
of Gcdh−/− mice on the same genetic background to high protein or
high L-lysine diet (L-lysine content in both diets, 4.7%), however, was
shown to induce seizures, paralysis, subarachnoidal hemorrhages, and
death within 3–6 days in the majority of 4-week-old mice, but not in
8-week-old mice suggesting age-dependent susceptibility similar to
the window of vulnerability for striatal injury in GA-I patients [49,46].
Interestingly, the source of L-lysine, protein bound or free amino acids
in chow, did not affect the induced phenotype in these studies.

A subgroup of 4-week-old Gcdh−/− micewith less strongly elevated
GA concentrations, however, remained asymptomatic for unknown rea-
sons. This is similar to the known variable clinical phenotype in siblings
and patients with the same GCDH gene mutation. Naturally occurring
susceptibility to L-lysine or protein (mice) or catabolism (human) sug-
gests an impact of modifier genes and/or environmental factors on the
clinical phenotype. The major aim of our study was to validate and to
optimize the oral L-lysine loading model for Gcdh−/− mice elucidating
factors that modify the susceptibility of Gcdh−/− mice to the L-lysine-
induced phenotype. These factors must be controlled to establish a
reliable animal model, but may also help to unravel new therapeutic
strategies for this disease.
178
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t1:1Table 1
t1:2Amount of L-lysine supplied by chow(%w/w) and drinkingwater in (%w/v) and inmgper
t1:3mouse and day based on average intake of 3 ml drinking water and 3.5 g chow.

t1:4L-lysine (chow %) 1.7 4.7 4.7 4.7 4.7 4.7

t1:5L-lysine (water %) 0 0 1.5 3 4.7 6.5

t1:6L-lysine [mg/day and mouse] 85 235 280 325 376 433
2. Materials and methods

2.1. Animals

Mice used in this study had a C57BL/6Crl × 129/SvCrl background.
Inbreeding of these mice from F1–F8 was used to alter the variability
of the genetic background along the generations. Animal breeding and
experiments were approved by the governmental review board
(Regierungspräsidium Karlsruhe, Germany; No. 35-9185.81/G-72/10).
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2.2. Treatment

The high L-lysine diet contained 4.7% (w/w) of L-lysine (Harland
Teklad, Indianapolis, IN), the standard diet contained 1.7% (w/w) of L-
lysine (Rod18, Las Vendi). To identify age-dependent changes in the
susceptibility to high L-lysine diet, Gcdh−/− mice received high L-
lysine or standard diet for a maximum of two weeks starting at ages
of 3, 4, 5, 6, or 8 weeks. Concentration-dependent effects of L-lysine ex-
posurewere studied by varying the L-lysine concentrations of the drink-
ing water (from 0 to 6.6% [w/v]) in addition to fixed L-lysine contents
(1.7 versus 4.7% [w/w]) in chow. Healthy Gcdh−/− and Gcdh+/− mice
showed an average daily intake of 4 ml drinking water and 3.5 g chow
per mouse. Table 1 illustrates the daily L-lysine supply per mouse and
day in our experiments.

To test the impact of genetic background on the susceptibility to L-ly-
sine, Gcdh−/− mice (C57BL/6 Crl × 129/SvCrl) inbred for up to 8 gener-
ations were exposed to increasing amounts of this amino acid in chow
and drinkingwater. As an additional control, we used C57BL/6Jmice ex-
posed to the same experimental conditions. Gcdh−/− mice have been
generated by injecting ES cells derived from 129X1/SvJ mice into
blastocytes from C57BL/6J mice and chimeric male animals were
crossed to C57Bl/6J females [47]. Thereafter, these mice were crossed
to 129X1/SvJ generating the reported (C57BL/6 Crl × 129/SvCrl) back-
ground [22,46,47,49].

2.3. Preparation of subcellular fractions and homogenates

For biochemical analyses, symptomatic mice were sacrificed shortly
before death and asymptomatic mice after two weeks of treatment. All
mice were decapitated and perfused with a solution of phosphate buff-
ered saline and 25 U/ml heparin. Afterwards, tissues (brain, liver) were
removed and chilled on ice in a buffer (0.1 ml per 1 mg of tissue) con-
taining 250 mmol/l sucrose, 50 mmol/l KCl, 5 mmol/l MgCl2, and 20
mmol/l Tris–HCl (adjusted to pH 7.4). Homogenates and mitochondrial
and cytosolic subcellular fractions of tissues were prepared as described
before [45]. Protein concentrations were determined according to
Lowry [50] with modifications [51] using bovine serum albumin as a
standard.

2.4. Quantitative analysis of GA and 3-OH-GA

The tissue-specific concentrations of GA and 3-OH-GA were deter-
mined in tissue homogenates using quantitative gas chromatography/
mass spectrometry with stable-isotope dilution assay as previously
described [33].

2.5. Quantitative analysis of C5DC

C5DC concentrations were determined in tissue homogenates
(600 ×g supernatant) and serum by electrospray ionization tandem
mass spectrometry according to a previously described method [33].

2.6. Amino acid analysis

Amino acid content of brain homogenates was analyzed by high-
performance liquid chromatography as previously described [45].
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022
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Fig. 1. Body weight under high L-lysine diet. (A) Symptomatic Gcdh−/− mice receiving
285 mg L-lysine per day continuously lost weight, whereas the body weight of control
mice remained unchanged (n = 9 mice per group).
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2.7. Enzyme analysis

Steady-state activity of enzymes involved in respiratory chain,
glycolysis, and tricarboxylic acid cycle (TCA) was determined using a
computer-tuneable spectrophotometer (SpectramaxPlus Microplate
Reader, Molecular Devices; Sunny Vale, CA) operating in the dual wave-
length mode; samples were analyzed in temperature-controlled 96-
well plates in a final volume of 300 μl.

2.8. Spectrophotometric analysis of glycolytic enzymes

Enzyme activities in cytosolic fractions were analyzed with and
without addition of substrate to subtract unspecific background. Glyco-
lytic enzyme activities were determined as NADP or NAD reduction, or
NADH oxidation at λ = 340–400 nm as previously described [52].

2.9. Electron transport chain (ETC) and electron flux

Respiratory chain complexes I–IV and ATP synthetase in mitochon-
dria fractions were investigated as previously described [53,44,52].
The addition of standard respiratory chain inhibitors was used to
ascertain the specificity of the enzymatic assays. To study electron
flow from complex I or II to complex III mitochondrial fractions were
incubated with NADH or succinate and, subsequently, the reduction of
cytochrome c was analyzed in the presence of NaCN.

2.10. Spectrophotometric analysis of TCA enzymes

Aconitase activity was determined according to [22], with modifica-
tions. Aconitase (0.70mg)was assayed in a buffer containing 0.7 U IDH,
36 mmol/Tris–HCl, 0.07 mmol/l citric acid, 0.18 mmol/l NADP, 1.3
mmol/l manganese sulfate, 0.8 μmol/l ferrous ammonium sulfate, and
0.08 mmol/l L-cysteine which was adjusted to pH 7.4 (25 C). Aconitase
activity was determined as NADP reduction at λ = 340–400 nm.

2-Oxoglutarate dehydrogenase complex (OGDHc) activity was mea-
sured according to [22], with modifications. OGDHc (650 mU/ml) was
assayed in a buffer containing 35 mmol/l potassium phosphate, 5
mmol/l MgCl2, 0.5 mmol/l EDTA, 0.5 mmol/l NAD, 0.2 mmol/l thiamine
pyrophosphate, 0.04 mmol/l CoA-SH, and 2 mmol/l 2-oxoglutarate
which was adjusted to pH 7.4 (30 °C). OGDHc activity was determined
as NAD reduction at λ = 340–400 nm.

Citrate synthase activity was measure as described previously [22].

2.11. Histology

For histological studies, mice were sacrificed at identical time points
as for biochemical analyses, and brains were perfused with 4% parafor-
maldehyde and post-fixed for 24 h in this solution and embedded in
paraffin. Paraffin blocks were cut in slices of 3–4 μm thickness using a
microtome (Leica Microsystems, Nussloch GmbH, Nussloch, Germany)
and placed onto SuperFrost slides (Thermo Scientific, Dreieich,
Germany). Sections were stained with hematoxylin & eosin (HE),
Klüver–Barrera (KB), and Periodic acid–Schiff (PAS) according to rou-
tine protocols for histologic evaluation. A spongiosis score was applied
taking into account the degree of tissue alteration (0 = absent; 1 =
mild; 2 = moderate; 3 = severe).

2.12. Statistical analysis

Data are expressed as mean ± SD unless otherwise stated. Experi-
ments were performed at least in triplicates. Tissue concentrations of
metabolites and enzyme activities were normalized to the protein con-
tent and analyzed by Student's t-test or ANOVA. To evaluate the effect of
increased L-lysine exposure on survival, binary logistic regression ana-
lyzed was applied. These statistical analyses were performed using
SPSS for Windows 16.0 Software. Histopathological changes were
Please cite this article as: S.W. Sauer, et al., Multifactorial modulation of s
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analyzed by the non-parametricWilcoxon test using JMP 8.0.1 software
(SAS, Cary, NC, USA). p b 0.05 was considered significant.

3. Results

3.1. Diet-induced mortality is modulated by age, genetic background, and
the initial oral L-lysine dose

It has been described previously that 75% of weanling (4-week-old)
Gcdh−/− mice on a C57BL/6J × 129/SvEv background (first generation)
which received a high L-lysine diet (chowwith 4.7% L-lysine [w/w], L-ly-
sine-free drinking water) died within 3–6 days after the start of this
treatment, whereas all adult (8-week-old) mice survived [46]. First,
we performed experiments using the original conditions to investigate
whether L-lysine-induced mortality was similar in our hands. We con-
firmed that L-lysine exposure of 4-week-old Gcdh−/− mice induced a
clinical phenotype rapidly progressing to death, but only in a small sub-
group (7%). First symptoms were observed as early as 24 h after the
start of treatment. The clinical presentation of symptomatic mice
started with reduced spontaneous activity and hypothermia and
progressed from reduction of food intake, to weight loss (Fig. 1), sei-
zures and, subsequently, death. All 8-week-old mice survived and all
Gcdh+/− mice (at any age) which were used as controls survived. Com-
pared to the original publication [46], the rate of mortality was much
lower in our hands (7% versus 75%).

We observed that Gcdh−/− mice changed their eating, but not their
drinking behavior during high L-lysine exposure. Therefore, we decided
to apply additional L-lysine via drinking water. Calculating the actual
daily L-lysine intake based on the amount of chow eaten per mouse,
we found that Gcdh−/− mice received relevant amounts of L-lysine
only during thefirst 24 h of treatment [lysine intake in % of symptomatic
but living Gcdh−/− mice on the same diet (Median, Min, Max) 24 h:
28.2, 0, 51.7; 48 h: 0, 0, 32.9; 96 h: 0, 0, 0]. Thereafter, chow and,
hence, L-lysine intake wasminimal due to onset of first symptoms indi-
cating that the initial L-lysine excess rather than chronic intake was
harmful to Gcdh−/−mice. Unlike Gcdh−/−mice on a hybrid background
(i.e., C57BL/6J × 129/SvEv), all 4-week-old Gcdh−/− mice on a C57BL/6J
inbred background remained asymptomatic and survived the 14-day L-
lysine exposure. This suggests that the genetic background modulates
the L-lysine-induced mortality. In contrast to Gcdh−/− mice, all control
mice (Gcdh+/−mice) survived, irrespective of their genetic background,
the amount of daily L-lysine supply and age at start of treatment. In
summary, we showed that L-lysine-induced mortality was specifically
induced in Gcdh−/− mice, but depended on age and the genetic back-
ground. Furthermore, we elucidated that oral lysine loading via chow
alone was not reliable, since L-lysine-treated mice changed their eating
behavior during exposure.

To better understand the factors modulating L-lysine-induced mor-
tality and to optimize the L-lysine exposure model we (1) modified
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022

http://dx.doi.org/10.1016/j.bbadis.2014.12.022


282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

4 S.W. Sauer et al. / Biochimica et Biophysica Acta xxx (2014) xxx–xxx
the L-lysine content in drinking water (0–6.5% [w/v]; total L-lysine sup-
ply, 235–433 mg/d), (2) extended the age spectrum from three to eight
weeks, and (3) investigated susceptibilities in female and male mice.
Using binary logistic regression analyses we identified three main ef-
fects modulating L-lysine-induced mortality in Gcdh−/− mice, i.e.
(1) gender, (2) the genetic background, and (3) the amount of daily L-
lysine supply (Nagelkerke's r2 = 0.624). Of note, we found no interac-
tion between these factors. Male mice showed a higher vulnerability
to a high L-lysine exposure than female mice (Fig. 2A; Wald = 8.6, p b

0.005). Inbreeding Gcdh−/− mice for at least three generations in-
creased their vulnerability to a high lysine diet (Fig. 2B; Wald = 28.9,
p b 0.001) and abolished their lack of susceptibility to a diet containing
235 mg/d L-lysine. Escalating the daily L-lysine supply up to 433 mg/d
also increased mortality in treated mice (Fig. 2C; Wald = 8.7, p b

0.05). As described before [49], 8-week-old mice survived a diet con-
taining 235 mg/d L-lysine. However, mortality could be induced in
these mice by increasing dietary L-lysine content to 325 mg/d (data
not shown). For mice younger than 8 weeks we found no effect of age
on the L-lysine-induced phenotype.
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Fig. 2. Stacked column chart of contingency tables for binary logistic regression analysis.
(A) Male mice showed a higher vulnerability to a high L-lysine diet than female mice.
(B) InbreedingGcdh−/−mice for at least 3 generations resulted in an increased vulnerabil-
ity to L-lysine enriched diet. (C) Mortality rate of Gcdh−/− mice was also elevated by in-
creasing the daily L-lysine supply up to 433 mg/d.
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In summary, we showed that L-lysine induced mortality is also de-
pendent on the genetic background of Gcdh−/− mice. The variation
caused by the genetic background, however, can be overcome by in-
creasing the amount of daily L-lysine supply ofGcdh−/−mice.Moreover,
the gender also modulates the induced phenotype.

3.2. Correlation between dicarboxylic compounds and the clinical
presentation

Since L-lysine is thought to be the major amino acid precursor for
toxic dicarboxylic metabolites in GA-I and Gcdh−/− mice, we hypothe-
sized that the dose-dependent increase in mortality after high L-lysine
exposure was associated with a dose-dependent increase in cerebral
and hepatic concentrations of toxic GA and 3-OH-GA. In fact, cerebral
and hepatic concentrations of both GA and 3-OH-GA increased during
L-lysine exposure above that of mice receiving the standard diet
(i.e., 85 mg/d). However, cerebral and hepatic concentrations of
GA reached a plateau between 235 and 376 mg/d L-lysine and
those of 3-OH-GA between 325 and 376 mg/d L-lysine (Fig. 3A,B).
Similarly, L-lysine concentrations of brain and liver tissue also
reached a plateau at a daily L-lysine supply of 325 mg/d (L-lysine
concentration (nmol/mg): 85 mg/d L-lysine supply, brain 11 ± 8, liver
15 ± 9; 325 mg/d L-lysine supply, brain 25 ± 4, liver 54 ± 16).

Next, a statistical comparison of all tested control mice (i.e. Gcdh−/−

mice receiving standard diet) with all tested asymptomatic and symp-
tomatic Gcdh−/− mice (i.e. Gcdh−/− mice receiving a high lysine diet
showing no symptoms and symptoms respectively) was performed.
As expected asymptomatic and symptomatic Gcdh−/− mice had higher
cerebral and hepatic GA concentrations than control mice. More impor-
tantly, symptomatic Gcdh−/− mice could be distinguished from asymp-
tomatic mice by a more pronounced increase in GA concentrations in
brain and liver (Fig. 3C). For 3-OH-GA, cerebral but not hepatic concen-
trations differed from asymptomatic mice, whereas asymptomatic mice
displayed the same concentrations in both organs as controls (Fig. 3D).
These results support the neurotoxicological hypothesis of GA-I and
confirm previous results [25,48,49,46]. To gain a reliable L-lysine-induc-
ible clinical phenotype, we performed all following experiments in 4-
week-old Gcdh−/− mice on a C57BL/6 Crl × 129/SvCrl inbred back-
ground using chow (4.7%, w/w) and drinking water (4.7%, w/v; total
L-lysine supply, 376 mg/d) enriched with L-lysine unless otherwise
stated.

3.3. Ammonia detoxification remains unaffected during L-lysine exposure

Glutaryl-CoA inhibits the TCA cycle [22], whereas GA [24] and – to a
lesser extent – 3-OH-GA [23] both inhibit the dicarboxylic acid shuttle
between astrocytes and neurons which relies on highly active pyruvate
carboxylase in astrocytes and effective sodium-dependent dicarboxylic
acid carriers 1 and 2. As a consequence, the flux and availability of TCA
cycle intermediates is thought to be impaired in GA-I [33,48]. One im-
portant TCA cycle intermediate is 2-oxoglutarate. This metabolite is a
substrate of many enzymes such as the 2-oxoglutarate dehydrogenase
complex in the TCA cycle. In addition, it provides the carbon backbone
for the synthesis of L-glutamine by L-glutamate dehydrogenase and L-
glutamine synthetase and thus for the fixation of ammonia. 2-
Oxoglutarate is also required as a substrate for the formation of
saccharopine within the so-called saccharopine pathway of L-lysine ox-
idation [45]. The formation of saccharopine is the first irreversible step
of L-lysine oxidation via this pathway. Since it was suggested that L-
lysine exposure might limit the availability of 2-oxoglutarate in
Gcdh−/− mice [46] and that 3-OH-GA and – less pronounced – GA
might increase the concentration of ammonia in 3D-organotypic rat
brain cell cultures [54], we wondered whether L-lysine exposure
would affect ammonia detoxification and the formation of L-glutamine
and urea in Gcdh−/− mice. Hyperammonemic crises are known to
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022
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Fig. 3. Changes in metabolic parameters following high L-lysine exposure. GA levels (A) were elevated in Gcdh−/− mice receiving 235 mg L-lysine per day. Increasing the dietary L-lysine
supply above 235 mg/d did not further increase the GA concentrations. The same pattern was found for 3-OH-GA (B) except that 325 mg L-lysine per day enhanced formation of this me-
tabolite (ANOVAwith contrasts, *p ≤ 0.05). Next, we compared the cerebral andhepatic concentrations of GA (C) and 3-OH-GA (D) in symptomatic [−/− Lys (symptomatic); n=14] and
asymptomatic [−/− Lys (asymptomatic); n = 18] Gcdh−/− mice receiving high L-lysine diet as well as in Gcdh−/− mice on a standard diet [−/− standard diet; n= 9]. GA and 3-OH-GA
concentrations were significantly increased in brain and liver of Gcdh−/− mice after high L-lysine exposure. Of note, symptomatic mice displayed higher cerebral and hepatic levels of GA
and 3-OH-GA than asymptomatic mice (ANOVA, *p ≤ 0.05).
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such as urea cycle disorders, but have never been reported in patients
with GA-I.

Serum and brain ammonia concentrations did not differ in Gcdh−/−

andGcdh+/−mice after L-lysine exposure (mean±SD: serum 105±38
μmol/l [Gcdh−/−] vs. 105± 28 μmol/l [Gcdh+/−]; brain 115± 15 μmol/l
[Gcdh−/−] vs. 147±18 μmol/l [Gcdh+/−]), whereas serumurea concen-
trations were higher in Gcdh−/− (183 ± 89 mg/dl; p = 0.036) than in
Gcdh+/− mice (33 ± 8 mg/dl). In analogy, urea concentrations in
brain and liver of Gcdh−/− mice were also elevated (Fig. 4A). Uremia
due to renal failure was excluded by analysis of serum creatinine and
cystatin C which both remained in the normal range (creatinine,
Gcdh+/− 0.5 ± 0.4 mg/dl, Gcdh−/− 0.9+/−0.5 mg/dl; cystatin C,
Gcdh+/− 0.3 ± 0.5 mg/l, Gcdh−/− 0.1+/−0.1 mg/l). In contrast to
urea, L-glutamate which is used for transient fixation of ammonia
by L-glutamine synthetase in liver and brain remained unchanged
in both tissues (Fig. 4B). Similarly, tissue-specific L-glutamine con-
centrations also remained unchanged following L-lysine exposure
(Fig. 4C). These results show that L-lysine exposure induces enhanced
but effective detoxification of ammonia via the urea cycle, but do not
support the notion of hyperammonemia playing an important role in
the neuropathogenesis of GA-I. The most likely cause of increased
ammonia is induction of catabolism following L-lysine exposure.
411

412

413

414

415

416

417
3.4. Changes in energy metabolism: focus on glycolysis and the TCA cycle

Previous studies have highlighted that impairment of brain energy
metabolism and formation of reactive oxygen species can be induced
by accumulating toxic dicarboxylic metabolites and thus is thought to
play a key role in the pathogenesis of GA-I [55,48,27]. So far, OGDHc
Please cite this article as: S.W. Sauer, et al., Multifactorial modulation of s
Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.12
and the dicarboxylate shuttle have been identified as major targets
[23,22,24]. We therefore wondered whether L-lysine exposure resulted
in changes of the major routes of energy metabolism.

L-lysine exposure induced changes in the activity of some glycolysis
and TCA cycle enzyme. Specifically, the activities of GAPDH and – less
pronounced – of PFK2, PGM2, PK LA, and LDH were specifically de-
creased in the brain but not in the liver of Gcdh−/− mice compared to
control mice, whereas hexokinase activity was slightly increased in
the liver (Table 2A). In the TCA cycle, activities for aconitase (liver and
brain) and OGDHc (liver) were lower in Gcdh−/− mice compared to
Gcdh+/− mice (Table 2B). In contrast, citrate synthase activity did not
differ between Gcdh−/− and Gcdh+/− mice (Table 2B) suggesting that
the decreased energy supply via glycolysis and TCA cycle is not
counterbalancedby increasedmitochondrial proliferation. The activities
of respiratory chain enzyme complexes I–IV andATP synthase remained
unchanged (Table 2C). In comparison to a previous study focusing ondi-
rect metabolite–enzyme interactions [22], these findings do not reflect
toxic metabolite-induced enzyme inhibition, but adaptive changes fol-
lowing L-lysine exposure.
3.5. Hippocampal pathology is most prominent but is not influenced by
L-lysine exposure

Themain neuropathological finding in symptomatic GA-I patients is
striatal necrosis which may manifest acutely during encephalopathic
crisis or insidiously in infancy [29,20]. In addition, extrastriatal changes
have been found both in symptomatic and asymptomatic patients.
This includes putatively reversible temporal hypoplasia and dilated
Sylvian fissures, T2 hyperintensity of white matter changes reflecting
spongiform myelinopathy as well as T2 hyperintensities in dentate
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022
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Fig. 4. Effect of L-lysine exposure on urea, glutamate, and glutamine. (A) Gcdh−/− mice
(−/− Lys, n = 8) showed an increase in urea concentrations of brain and liver compared
to controls (+/− Lys, n = 10) after treatment with high L-lysine diet (Student's t-test,
*p ≤ 0.005). Glutamine (B) and glutamate (C) levels were similar in both groups.
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Cnuclei, substantia nigra, and the pontine medial lemniscus [56,14,57,

58]. In Gcdh−/− mice receiving high protein or high L-lysine diet, the
striatal pathology was thought to be similar to GA-I patients [49,46].
In these studies, however, striatal cell loss was only significantly in-
creased in asymptomatic 8-week-old animals after a high L-lysine diet
for 6 weeks but not in symptomatic 4-week-old animals after 3 days
of L-lysine exposure. Both treatment groups, however, showed pro-
nounced cortical cell loss and, additionally, subarachnoidal, subdural
and intraventricular hemorrhages as well as BBB breakdown. Subarach-
noidal and intraventricular hemorrhages have not yet been reported in
GA-I patients, whereas subdural hygromas resembling non-accidental
head trauma are sometimes found, usually as an incidental finding in
MRI studies [14,15].

In our hands, symptomatic Gcdh−/− mice receiving optimized high
L-lysine diet as described in detail above did not produce a significant
striatal pathology (Fig. 5). Furthermore, we did not find evidence for
BBB breakdown or intracranial hemorrhages (not shown). In contrast
to GA-I patients, the major pathology in Gcdh−/− mice was identified
Please cite this article as: S.W. Sauer, et al., Multifactorial modulation of s
Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.12
in the hippocampus and – less pronounced – in the cortex showing
massive focal spongiosis and focal neuronal damage within these
areas. Neuronal damage consisted among other features of neuronal
pyknosis, nuclear chromatin condensation, and dark neurons indicating
very early (i.e. 1–48 h) signs of neuronal damage. These changes, how-
ever, appeared in both Gcdh−/− mice on a standard and on a high L-
lysine diet.

Statistical analysis confirmed that hippocampal spongiosis was in-
creased in Gcdh−/− mice compared to Gcdh+/− mice, but that it did
not depend on the amount of L-lysine in the diet (Fig. 5). In analogy to
previous studies, we also found an increased rate of spongiosis in the
cortex (Fig. 5). No striking pathology was observed in thewhite matter.
 P
R
O

O
F4. Discussion

The major aim of our study was to validate and to optimize the pre-
viously published L-lysine-induced mouse model for GA-I [46] and to
identify modifiers that influence the induced clinical phenotype. High
L-lysine exposure in weanling (4-week-old) but not in adult (8-week-
old) Gcdh−/− mice induced an acute clinical phenotype, but only in
small group of animals. Initial symptoms are reduced spontaneous ac-
tivity and hypothermia that progress over weight loss and seizures to
death within 24–96 h. Despite these similarities to previous findings
[46], we observed significant obstacles in the reliability and reproduc-
ibility of this diet-induced model and raised questions on whether the
induced neuropathology is similar to that of GA-I patients. In the follow-
ing, wewill discuss ourmajor findings that support the need of a critical
revision of this model.
E4.1. Genetic background

In our study the mortality rate of Gcdh−/− mice on a high L-lysine
diet was strongly dependent on the genetic background. Mice of the
F1 generation (C57Bl6/Crlx129/SvCrl; as used in the study of [49,46]
as well as mice of F2 generation on a 4.7% (i.e., 235 mg/d) L-lysine diet
had 93% survival rate. In contrast, inbreeding of Gcdh−/− mice strongly
increased their susceptibility to L-lysine exposure and improved the re-
liability of the L-lysine-induced phenoytpe. Gcdh−/− mice of F6–8 gen-
erations showed neurological symptoms and a high mortality (~71%)
receiving 235 mg L-lysine/d. These findings suggest that susceptibility
to high L-lysine diet is based on modifier genes of mice on a mixed
C57Bl6/Crl × 129/SvCrl background whose phenotypic impact changes
during inbreeding. Whether increased susceptibility to L-lysine expo-
sure from the F1 to the F8 generation reflects an increasing impact of
genes which amplify L-lysine-induced toxicity or the decreasing impact
of neuroprotective factors remain to be elucidated. Nevertheless, it is
well known that inbreeding generally decreases the fitness of mice
and their susceptibility to different stress conditions (the so-called in-
breeding depression).

Moreover, we demonstrate that male mice have a higher risk to de-
velop neurological symptoms than female mice on a high L-lysine diet.
This is similar to a variety of murine models for neurological disorders
such as stroke [59].
4.2. L-lysine exposure

Susceptibility to a high L-lysine diet (235 mg/d) in F1 and F2 gener-
ations could be increased by escalating the daily L-lysine supply (280–
433 mg/d). All Gcdh−/− mice of F6–8 generation receiving at least
376 mg L-lysine per day developed neurological symptoms and died
within 96 h, whereas 22% of F1–2 generation mice survived on this
diet. Since L-lysine exposure induced a decreased food intake, we hy-
pothesize that the peak L-lysine intake during the first 24 h of the start
of L-lysine exposure is most important for inducing a clinical phenotype
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022
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t2:1 Table 2
t2:2 Tissue-specific effects of L-lysine exposure on glycolysis, TCA cycle, and respiratory chain.
t2:3 Activities of enzymes of energy metabolism in control and Gcdh−/− mice receiving a modified high L-lysine diet (n = 10 per group)Q1 .

t2:4 Brain [mU/mg protein] Liver [mU/mg protein]

t2:5 Table 2A. Glycolysis
t2:6 Hexokinase Gcdh+/− 4.9 ± 1.2 6.3 ± 1.1
t2:7 Gcdh−/− 4.9 ± 0.8 7.4 ± 0.9
t2:8 p-Value (t-test) 0.881 0.000
t2:9 Phosphofructokinase Gcdh+/− 2.5 ± 1.3 43.0 ± 8.4
t2:10 Gcdh−/− 1.8 ± 0.9 39.0 ± 12.0
t2:11 p-Value (t-test) 0.032 0.1790
t2:12 Triosephosphate isomerase Gcdh+/− 892.2 ± 227.6 770.6 ± 126.5
t2:13 Gcdh−/− 834.3 ± 134.5 751.0 ± 100.7
t2:14 p-value (t-test) 0.254 0.534
t2:15 Glyceraldehyde 3-phosphate dehydrogenase Gcdh+/− 294.9 ± 153.3 38.2 ± 2.6
t2:16 Gcdh−/− 146.4 ± 72.2 40.5 ± 4.3
t2:17 p-Value (t-test) 0.001 0.0880
t2:18 Phosphoglycerate mutase Gcdh+/− 242.2 ± 35.3 211.4 ± 40.3
t2:19 Gcdh−/− 217.5 ± 26.3 207.6 ± 32.0
t2:20 p-Value (t-test) 0.005 0.701
t2:21 Enolase Gcdh+/− 518.3 ± 79.3 536.3 ± 126.3
t2:22 Gcdh−/− 533.1 ± 115.2 561.2 ± 113.2
t2:23 p-Value (t-test) 0.599 0.4560
t2:24 Pyruvate kinase
t2:25 Low affinity form

Gcdh+/− 379.3 ± 101.3 834.3 ± 186.1
t2:26 Gcdh−/− 298.3 ± 54.6 795.3 ± 167.3
t2:27 p-Value (t-test) 0.004 0.507
t2:28 Pyruvate kinase
t2:29 High affinity form

Gcdh+/- 126.2 ± 33.6 469.8 ± 83.1
t2:30 Gcdh−/− 118.9 ± 22.4 441.9 ± 77.9
t2:31 p-Value (t-test) 0.344 0.2150
t2:32 Lactate dehydrogenase Gcdh+/− 918.3 ± 301.2 623.7 ± 86.1
t2:33 Gcdh−/− 766.1 ± 133.6 618.6 ± 90.7
t2:34 p-Value (t-test) 0.018 0.839
t2:35
t2:36 Table 2B. TCA cycle
t2:37 Citrate synthase Gcdh+/− 85.4 ± 15.5 17.3 ± 5.3
t2:38 Gcdh−/− 92.9 ± 19.3 16.5 ± 4.3
t2:39 p-Value (t-test) 0.137 0.535
t2:40 Aconitase Gcdh+/− 2.49 ± 1.34 0.97 ± 0.65
t2:41 Gcdh−/− 1.02 ± 0.68 0.38 ± 0.21
t2:42 p-Value (t-test) 0.000 0.0000
t2:43 2-Oxoglutarate dehydrogenase complex Gcdh+/− 7.7 ± 1.6 7.5 ± 3.8
t2:44 Gcdh−/− 8.1 ± 2.5 3.4 ± 2.8
t2:45 p-Value (t-test) 0.464 0.000
t2:46
t2:47 Table 2C. Respiratory chain
t2:48 Complex I Gcdh+/− 11.7 ± 3.3 22.8 ± 5.4
t2:49 Gcdh−/− 11.8 ± 2.6 23.0 ± 6.4
t2:50 p-Value (t-test) 0.939 0.912
t2:51 Complex II Gcdh+/− 9.4 ± 2.5 13.0 ± 4.6
t2:52 Gcdh−/− 9.0 ± 2.6 13.7 ± 4.7
t2:53 p-Value (t-test) 0.568 0.617
t2:54 Complex III Gcdh+/− 39.4 ± 6.0 22.5 ± 11.7
t2:55 Gcdh−/− 39.9 ± 7.4 21.6 ± 7.5
t2:56 p-Value (t-test) 0.797 0.736
t2:57 Complex IV Gcdh+/− 1172.6 ± 530.1 583.5 ± 315.0
t2:58 Gcdh−/− 1123.9 ± 227.1 579.6 ± 176.0
t2:59 p-Value (t-test) 0.654 0.955
t2:60 ATP synthase Gcdh+/− 54.9 ± 13.2 19.7 ± 6.8
t2:61 Gcdh−/− 53.7 ± 8.9 20.7 ± 7.6
t2:62 p-Value (t-test) 0.701 0.635
t2:63 Flux complex I–III Gcdh+/− 31.9 ± 7.5 132.4 ± 50.9
t2:64 Gcdh−/− 31.4 ± 6.3 121.4 ± 53.2
t2:65 p-Value (t-test) 0.815 0.453
t2:66 Flux complex II–III Gcdh+/− 2.6 ± 0.8 11.7 ± 6.4
t2:67 Gcdh−/− 2.6 ± 1.3 11.5 ± 3.0
t2:68 p-Value (t-test) 0.985 0.838
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in these mice. This may be associated with an increase in neurotoxic
dicarboxylic metabolites that induce the acute clinical phenotype.

4.3. Threshold for neurotoxicity

For GA-I patients, there is no known correlation between the geno-
type and clinical phenotype or the biochemical and the clinical pheno-
types, whereas the genotype correlates with the biochemical
phenotype [7,29,17]. Furthermore, there is a high variability in the
Please cite this article as: S.W. Sauer, et al., Multifactorial modulation of s
Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.12
severity of the disease course, even in siblings and in other patients
with the same GCDH genemutations [17]. Considering the toxic metab-
olite and trapping hypotheses it is tempting to speculate that the vari-
ability of the natural history of GA-I patients might be based on
different intracerebral concentrations of neurotoxic metabolites and
that such differences might be influenced by the genetic background
and environmental factors.

We therefore wondered whether symptomatic and asymptomatic
Gcdh−/− mice differed in their GA and 3-OH-GA concentrations during
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022
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Fig. 5. Brain pathology of Gcdh−/− mice. Histological analysis of hippocampal sections of (A)WT control, (B) +/− 376 mg/d Lys, (C)−/− 85 mg/d Lys, (D)−/− 235 mg/d Lys, (E)−/−
280 mg/d Lys and (F)−/− 376 mg/d Lys mice are depicted (for each condition HE (left) and Klüver–Barrera (right) stainings are depicted). In comparison toWT control and+/−mice,
Gcdh−/− mice display CNS spongiosis which is most prominent in the hippocampus (scale bar = 500 μm for all images). (G) Box-plots of different genetic and dietary conditions are
depicted. Statistical analysis was performed using non-parametric Wilcoxon test. A significance level of alpha = 0.05 was selected for all tests (* = p b 0.05). (+/− 376 mg/g Lys:
n = 4; −/− 85 mg/d Lys: n = 4;−/− 235 mg/d Lys: n = 5; −/− 280 mg/d: n = 3;−/− 376 mg/d: n = 3).
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OL-lysine exposure. In fact, symptomatic mice showed a much higher

increase in cerebral and hepatic GA and – less pronounced – in cerebral
3-OH-GA concentrations than asymptomatic mice.
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N4.4. Oral L-lysine loading induced pathology results in enhanced catabolism

Due to reduced food intake oral L-lysine loading leads to a catabolic
state of symptomatic animals and, thereby, increases the breakdown
of L-lysine and other amino acids. Symptomatic Gcdh−/− mice showed
weight loss upon start of L-lysine exposure as well as increased produc-
tion of urea secondary to increased ammonia production. Normal serum
cystatin C and creatinine concentrations virtually exclude renal insuffi-
ciency as cause of elevated urea concentrations upon treatment.

Zinnanti and colleagues put forward the idea that a high L-lysine diet
diminishes 2-oxoglutarate levels due to increased saccharopine path-
way activity [46]. However, in our study we did not find evidence for
decreased L-glutamate or L-glutamine levels as a consequence of 2-
oxoglutarate depletion. Our data also do not support the suggestion
that hyperammonemia plays a pathomechanistic role [54] since we
Please cite this article as: S.W. Sauer, et al., Multifactorial modulation of s
Biochim. Biophys. Acta (2014), http://dx.doi.org/10.1016/j.bbadis.2014.12
did not find increased cerebral L-glutamine or ammonia concentrations.
In analogy, hyperammonemic episodes have never been reported for
patients with GA-I.

4.5. L-lysine diet induced changes of energy metabolism

Evaluation of energymetabolism in symptomatic and asymptomatic
mice identified functional impairment and secondary changes of en-
zyme activities in glycolysis and TCA cycle, whereas activities of respira-
tory chain complexes remained unchanged. Most notably, activities of
GAPDH and aconitase activities were markedly decreased in the brain
of Gcdh−/− mice after L-lysine exposure. No increase of citrate synthase
activity was found in Gcdh−/− mice upon L-lysine exposure suggesting
that mitochondrial proliferation is not induced to compensate for the
reduced metabolite flux in glycolysis and TCA cycle. Of note, the used
enzymatic assays record steady state activity and donot reflect inhibito-
ry effects of accumulating metabolites. In a previous study we have
shown that GA, 3-OH-GA, or glutaryl-CoA do not have a direct inhibitory
effect on proteins of energy metabolism except for an inhibition of
OGDHc by glutaryl-CoA [22]. Therefore, the observed changes in our
usceptibility to L-lysine in an animal model of glutaric aciduria type I,
.022
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study are most likely due to metabolic stress induced by increased L-
lysine intake.

GAPDH, OGDHc, and aconitase have shown to be highly vulnerable
for oxidative stress decreasing their catalytic activity [60–63]. In concert
with the direct inhibition of OGDHc by glutaryl-CoA these findings indi-
cate that impairment of energy homeostasis plays an important role in
neuropathogenesis of GA-I.

4.6. Hippocampal spongiosis is amajor neuropathological finding inGcdh−/

− mice but does not depend on dietary L-lysine supply

Histological evaluation of Gcdh−/− mice following L-lysine exposure
revealed no considerable pathology of the striatum. In contrast,
Gcdh−/− mouse brains showed increased spongiosis, most prominently
within the hippocampus. Although hippocampal spongiosis was signif-
icantly increased in Gcdh−/− mouse brain as compared to Gcdh+/−

mice, no considerable differences were detected between symptomatic
and asymptomaticmice. Further, neuropathological changeswere inde-
pendent of the amount of L-lysine supplied. This is in contrast to a pre-
vious studywhich suggested that the high L-lysine diet induces a striatal
pathology similar to that of GA-I patients [49].

Hippocampal neurons are highly vulnerable to various toxins and
ROS and thus are involved in many neurodegenerative diseases [64].
An in vitro study has demonstrated that hippocampal rat neurons are
susceptible to 3-OH-GA and ROS formation [55]. Chronic damage of
these neurons may occur in Gcdh−/− mice due to long-term exposure
to high cerebral GA and 3-OH-GA concentration during postnatal and
maybe also prenatal brain development. Selective spongiosis in hippo-
campus and cortex has been found in neurodegenerative diseases
such as Alzheimer's disease [65–67]. PAS staining indicates that
spongiosis occurs due to loss of neuronal cells as it has been suggested
before by Zinnanti et al. [46] and been demonstrated in asymptomatic
Gcdh−/− mice on a standard diet [47]. In GA-I patients, however, no ev-
idence of a significant hippocampal pathology has been found yet [29].
This may reflect species-dependent differences

4.7. Gcdh−/− mice as an animal model for GA-I

The acute clinical phenotype in Gcdh−/− mice induced by a high L-
lysine depends on various parameters such as the age at start of treat-
ment, gender, genetic modifiers, and the amount of oral L-lysine supply.
These parameters, as far as they are known, need to be carefully con-
trolled to achieve a reliable and reproduciblemurinemodel for GA-I. Al-
though this model resembles the biochemical phenotype of GA-I
patients with a high excreting phenotype, neuropathological changes
were significantly discrepant to the human phenotype. Specifically,
major changes were observed in the murine hippocampus, whereas
the striatum remained virtually unaffected. In addition, the same hippo-
campal changeswere observed inGcdh−/−mice both on a standard diet
or on a high L-lysine diet and thus are likely induced by chronic rather
than acute neurotoxicity. Since both, the spontaneously developing
and the high L-lysine diet-induced clinical phenotype, differ from that
of GA-I patients, clinical endpoints for therapeutic studies on Gcdh−/−

mice should be carefully chosen. Of note, the lack of apparent neuropa-
thology in the sensitive mice is suggestive of toxicity that affects only a
relatively minor population of neurons. In contrast to the global injury
reported by Zinnanti and others, this is more consistent with the ob-
served phenotype in patients with GA-I. Future studies have to identify
the subpopulation of affected neurons which will further help to evalu-
ate the suitability of this animal model.

For the first time, we have demonstrated that the genetic back-
ground and gender plays an important role in the clinical phenotype.
This needs to be addressed more specifically in future studies in order
to elucidate factors that influence cerebral L-lysine oxidation and the
susceptibility to neurotoxic metabolites and thus might be used for
the development of new therapeutic strategies.
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