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Abstract
Glutaric acidemia type I (GA-I) is a neurometabolic disease caused by deficient activity of glutaryl-CoA dehydrogenase (GCDH)
that results in accumulation of metabolites derived from lysine (Lys), hydroxylysine, and tryptophan catabolism. GA-I patients
typically develop encephalopatic crises with striatal degeneration and progressive white matter defects. However, late onset patients
as well as Gcdh−/− mice only suffer diffuse myelinopathy, suggesting that neuronal death and white matter defects are different
pathophysiological events. To test this hypothesis, striatal myelin was studied in Gcdh−/−mice fed from 30 days of age during up to
60 days with a diet containing normal or moderately increased amounts of Lys (2.8%), which ensure sustained elevated levels of
GA-I metabolites. Gcdh−/−mice fed with 2.8% Lys diet showed a significant decrease in striatal-myelinated areas and progressive
vacuolation of white matter tracts, as compared with animals fed with normal diet. Myelin pathology increased with the time of
exposure to high Lys diet and was also detected in 90-day old Gcdh−/− mice fed with normal diet, suggesting that dietary Lys
accelerated the undergoing white matter damage. Gcdh−/− mice fed with 2.8% Lys diet also showed increased GRP78/BiP
immunoreactivity in oligodendrocytes and neurons, denoting ER stress. However, the striatal and cortical neuronal density was
unchanged with respect to normal diet. Thus, myelin damage seen in Gcdh−/−mice fed with 2.8% Lys seems to be mediated by a
long-term increased levels of GA-I metabolites having deleterious effects in myelinating oligodendrocytes over neurons.
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Introduction

Glutaric acidemia type I (GA-I, MIM# 231670) is an inherited
neurometabolic disease of early infancy caused by mutations in
the mitochondrial enzyme glutaryl-CoA dehydrogenase
(GCDH, MIM# 608801, E.C. 1.3.99.7) that causes severe lack
of enzymatic function. Decreased GCDH activity alters the ca-
tabolism of L-tryptophan, L-lysine (Lys), and L-hydroxylysine
[1–4] causing accumulation of predominantly glutaric and 3-
hydroxyglutaric acids in brain and body fluids. Increased con-
centrations of these organic acids up to millimolar levels are
thought to be associated with GA-I clinical features that include
acute Bencephalopatic crises^ followed by chronic motor and
neurological sequelae [1, 5]. Loss of striatal neurons, progressive
cortical neurodegeneration, and white matter alterations are the
characteristic pathological features of GA-I [2, 6]. Interestingly,
white matter alterations also occur in the absence of neurological
damage as it has been shown in adult onset patients [7–9], sug-
gesting that in GA-I white matter injury and neuronal loss may
be independent pathophysiological processes.
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Accordingly, the Gcdh−/− mouse model of the disease,
which lacks GCDH activity and accumulates high levels of
GA-I metabolites [10, 11], does not suffer spontaneous striatal
neurodegeneration or relevant neurological symptoms, but
presents a diffuse spongiform myelinopathy similar to that
observed in human patients affected by GA-I [10, 11]. As
Gcdh−/−mice show elevated levels of GA-I metabolites repro-
ducing the biochemical profiles of the disease [10, 11], we
propose that white matter defects might depend on sustained
levels of GA-1 metabolites and not strictly on neuron damage.

However, to the best of our knowledge, there are no reports
focused on myelin defects over neuronal damage in GA-I.
Previous works have shown that white matter defects accom-
panied different degrees of acute neurological damage when
Gcdh−/− mice are metabolically stressed by diets containing
high amounts of Lys that raised the levels of glutaric and
3-hydroxyglutaric acids in the brain [6, 12]. These authors re-
ported seizures, paralysis, subarachnoid hemorrhages, and
death within 3 to 6 days in the majority of the 4-week old
Gcdh−/− mice, as well as white matter lesions and neuronal
loss after 6 weeks in 8-week old Gcdh−/−mice, suggesting that
myelin defects occur secondarily to neuron death. Nevertheless,
these results could not been replicatedwhen using their reported
protocol [13, 14] or an alternative model that administers Lys
into the drinking water to ensure sustained Lys consumption
during 14 days [13]. Thus, there are no confirmatory findings
showing that white matter defects depend more on sustained
levels of GA-I metabolites rather than on neuron damage.

To test this hypothesis, we have designed an experimental
protocol in which moderately high amounts of Lys (2.8%) are
administered to weanling Gcdh−/− mice for up to 60 days to
ensure sustained high levels of GA-I metabolites, however, at
concentrations that did not elicit encephalopatic crises or cause
animal death. Therefore, we fed 30-day-old Gcdh−/− and WT
mice with a diet containing 2.8% Lys during 3, 30, or 60 days
and evaluated striatal myelin damage because the striatum is the
most vulnerable brain area to suffer degeneration in patients with
GA-I [1, 4, 15, 16] and correspond to the region earlier affected
in other murine models of GA-I [17]. Results were compared to
Gcdh−/− and WT mice fed with normal Lys content (0.9%).

We found that the moderately high and sustained Lys diet
selectively damaged the white matter in Gcdh−/− mice, prob-
ably by eliciting endoplasmic reticulum (ER) stress.
Interestingly, white matter defects were not associated with
significant cellular or neuronal death.

Materials and Methods

Materials

Sudan III, diamino-2-phenylindole (DAPI), paraformaldehyde,
sodium phosphate-based saline solution, and all other

chemicals of analytical grade were obtained from Sigma (St.
Louis,MO). FluoroMyelin and secondary antibodieswere from
Molecular Probes (Whaltam, MA). Primary antibodies were
purchased to Molecular Probes, abcam (Cambridge, MA),
Millipore (Billerica, MA), and Invitrogen (Whaltam, MA).

Ethical Statement

This study was performed in accordance with the Principles of
Laboratory Animal Care, National Institute of Health of
United States of America, NIH, publication no. 85–23 (2011
revision) and approved by the Ethical Committee for the Care
and Use of Laboratory Animals of the Hospital de Clínicas of
Porto Alegre, and by the National Committee for Laboratory
Animal Care (CNEA) fromUruguay. All efforts were made to
minimize suffering, discomfort, and stress to the animals. The
number of animals employed in this work was necessary to
produce reliable scientific data.

Animals

Wild type (WT, Gcdh+/+) and Gcdh−/− littermates, both of
C129SvEv background, were generated from heterozygotes
and maintained at the Unidade Experimental Animal of the
Hospital de Clínicas de Porto Alegre (Porto Alegre, Brazil)
under a 12:12 h light/dark cycle (lights on 07:00–19:00 h) in
an air-conditioned constant temperature (22 ± 1 °C) colony
room, with free access to water and 20% (w/w) protein com-
mercial chow containing 0.9% Lys (SUPRA, Porto Alegre,
RS, Brazil).

Animals’diet

Animals were kept with the mother until 30 days of life, where
we proceeded to weaning and genotyping to identify WT and
Gcdh−/− mice [14]. At this time, half of each background
started to be fed with normal diet (ND) containing 20% pro-
tein containing 0.9% Lys, whereas the other half received a
chow with 20% protein with 2.8% Lys as previously reported
[14, 18].

Animal Processing and Tissue Preparation

After 3, 30, and 60 days of feeding animals with ND (0.9%
Lys) or 2.8% Lys, WT and Gcdh−/− animals were anesthe-
tized with ketamine/xilazine (90:10 mg/kg) and submitted to
intracardiac perfusion with a volume of phosphate buffered
saline solution (PBS) containing commercial anticoagulants
and then with 4% paraformaldehyde (PFA) in 10 mM,
pH 7.4 PBS. After fixation, brains were quickly removed,
post-fixed with 4% PFA overnight at 4 °C, and then main-
tained at 4 °C in PBS until sectioning. A 1000S Leica
(Buffalo Grove, IL) vibratome was used to obtain 30μm thick
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consecutive coronal series containing the striatal region.
Sections containing the striatum were stored either
free-floating at 4 °C to perform myelin histochemistry or
mounted to do immunostaining against myelin basic protein
(MBP), APC product gene (CC-1 protein), NeuN or GRP78/
BiP protein.

Myelin Histochemistry

Coronal brain sections of WT and Gcdh−/− mice fed with
either ND or 2.8% Lys were permeabilized with 0.3%
X-100 Triton during 20 min, immersed in 70% ethanol for
2 min, and then incubated with 2% Sudan III for 30 min at
room temperature [17]. The reaction was stopped with 70%
ethanol and further with distilled water. Stained sections were
then adhered to glass slides, left drying overnight at room
temperature, and mounted in glycerol.

Brain sections containing the striatum at equivalent levels
from all experimental conditions were placed on clean cover-
slips, delimited with Pap Pen and directly stained with 1:300
dilution of the stock solution of FluoroMyelin Green during
20 min at room temperature. Sections were then rinsed,
mounted in glycerol, and imaged in a confocal FV300
Olympus microscope using a 488-nm laser. Size of striatal
areas positive to Sudan III or FluoroMyelin was measured
by using the Image J or the FIJI (NIH, Bethesda, MD) soft-
ware in WT and Gcdh−/− mice fed with ND or 2.8% Lys
along the whole dieting period. A ratio between myelinated
areas in animals of the same background was obtained by
dividing the values obtained in animals fed with 2.8% Lys
per those obtained in age-matched animals fed with ND.
Around five to seven animals of each background were ana-
lyzed per each diet condition and age.

Immunohistochemistry

For each animal and staining procedure, 5–7 equivalent sec-
tions covering the striatum were employed. Anatomical land-
marks (aspect, size and position of the anterior commissures,
corpus callosum, lateral ventricles, striatum, and nucleus ac-
cumbens; [19]) were used to ensure that parameters were an-
alyzed at similar levels within and between groups.
Commercial antibodies chosen were specific and allowed rec-
ognizing MBP, APC (CC-1) that labels mature oligodendro-
cytes (OLs), and the pan-neuronal marker NeuN, all previous-
ly employed successfully [17, 20]. A polyclonal antibody was
employed to evaluate GRP78/BiP signal as an indicator of ER
stress [21]. DAPI that labels all cells was employed to deter-
mine cellular density in the striatum. All the assays were per-
formed on free-floating sections that were washed, perme-
abilized with 0.1–0.3% Triton X-100 in 10 mM PBS during
20 min, then blocked during 30 min with PBS containing
0.3% Triton X-100 plus 5% bovine serum albumin.

Afterward, at 4 °C overnight incubation with a single antibody
or a pair of antibodies was performed in a wet chamber:
anti-MBP (1:500, abcam), anti-APC product gene (1:300,
abcam), anti-NeuN (1:500, abcam), or anti-GRP78/BiP
(1:500, abcam). Then sections were washed and incubated
for 90 min with 1:800 dilutions of 1 mg/mL secondary anti-
bodies conjugated to Alexa fluorescent probes (Molecular
Probes). After three washes, sections were mounted in glyc-
erol containing 1 μg/mL DAPI. As negative controls, the pri-
mary or secondary antibodies were omitted.

Image Acquisition

Light microscopy images were acquired by using an inverted
IX61 Olympus microscope attached to a DSP71 monochro-
matic camera and its attached software. Immunofluorescence
2048 × 2048 images were obtained in a FV300 Olympus con-
focal microscope provided with 405, 488, 546, and 633 nm
lasers. Microphotographs of representative areas were taken
with all acquisition parameters identical for animals fed with
ND or 2.8% Lys (PMT below to 650 V, 0% gain, 0 Voffset,
negative controls, and maximum pixel size). Once pictures
were obtained, cells positive to DAPI and each specific mark-
er were counted in 5–7 fields of each striatal section. Fifteen to
21 slices from five to seven animals per condition were ana-
lyzed at equivalent striatal levels.

Data Analysis

Statistical analysis was performed with Origin 8.5 or free
downloaded GraphPad Prism software programs. Cell num-
bers or densities as well as myelinated areas comparing two or
many groups were analyzed by using unpaired Student’s t test
or one-way ANOVA followed by Tukey or Tukey–Kramer
post hoc analysis if necessary. All results are presented as
mean ± SD; p ≤ 0.05 was considered significant.

Results

Myelin Alterations in Gcdh−/− Mice Fed with 2.8% Lys Diet
Immediately after weaning, 30-day-old WT and Gcdh−/−
mice started to be fed with ND containing 0.9 or 2.8% Lys
during 3, 30 or 60 days, respectively. Under ND, striatal my-
elin of WT and Gcdh−/− animals did not show significant
differences both in the microscopic morphology or in total
areas up to 60 days old (Fig. 1a). At 90 days old, Gcdh−/−
mice showed ~ 15 and 20% decrease in myelinated areas
related to 30-day-old Gcdh−/− and to 90-day-old WT mice,
respectively (Fig. 1b), suggesting a delayed demyelinating
process.

Diet containing 2.8% Lys did not cause significant signs of
myelin damage along the whole treatment in WTanimals (left

Mol Neurobiol



images Fig. 2a, Fig. 2 b, c). In contrast, Gcdh−/−mice fed with
2.8% Lys displayed a progressive decrease in myelinated
areas by 30 and 55% at 30 and 60 days of treatment, respec-
tively (Fig. 2a, right images, Fig. 2b, c), suggesting that Lys
intake aggravated the loss of myelin in Gcdh−/− mice.

Defective striatal myelinated bundles in Gcdh−/− mice fed
with 2.8% Lys typically displayed pathological vacuolation
assessed by Sudan III, FluoroMyelin, and MBP immunoreac-
tivity (Figs. 2a and Fig. 3). Vacuoles appeared as big Bholes^
inside the striatal axonal packages (Fig. 4a, white arrows)
whose number increased with duration of 2.8% Lys feeding
and widespread progressively throughout many axonal pack-
ages (Fig. 4b, c).

Decreased Density of APC (CC-1) Positive OLs in Gcdh−/−
Mice Fed with 2.8% Lys Diet Although the number of striatal
APC (CC-1) positive OLs was low, Gcdh−/− mice fed with
2.8% Lys evidenced a 35 and 60% decreased density of mature
positive OLs after 30 and 60 days of treatment as compared to
WTanimals fed with the same chow (Fig. 5 a, c). APC (CC-1)
positive OLs in Gcdh−/− mice fed with 2.8% Lys also was 25
and 40% minor than age matched Gcdh−/− mice fed with ND
(Fig. 5a, c). APC (CC-1) OLs appeared swollen (~ 15% in-
creases in body diameters; Fig. 5a, white arrow) which may
suggest increased ER stress [17, 22]. Accordingly, increased
signal of the ER stress marker GRP78/BiP (Fig. 5b, d) was
found in Gcdh−/− mice fed with 2.8% Lys during 60 days.
Quantitative analysis revealed a general increase in GRP78/
BiP signal in several striatal cell types of Gcdh−/− mice fed

with 2.8% Lys during 60 days (Fig. 5d). However, no signifi-
cant decrease in total striatal nuclear density (99 ± 10% in 2.8%
Lys diet compared to ND was found in 90-day-old mice fed
with 2.8%Lys during 60 days), suggesting that Lys intake may
elicit ER stress but did not cause significant cell death.

Absence of Significant Neuronal Death in Gddh−/−
Mice Submitted to 2.8% Lys

Since ER stress may provoke neuronal death [23], we an-
alyzed NeuN staining in the striatum and cortex to assess
the survival of local neurons and of cortical neurons
projecting to the striatum. No significant differences in
the density of NeuN signal was found in any experimental
conditions discarding that even the Gcdh−/− mice fed with
2.8% Lys during 60 days suffer significant neuronal death
(Figs. 5e, Supplementary 1). Moreover, no evident changes
were observed in NeuN labeling neither in the striatum nor
in frontal cortex (Figure Supplementary 1), thus discarding
significant neuronal death.

Discussion

In the present study, we found that a long lasting and sustained
increased Lys content in a daily diet triggers a significant
white matter injury in the striatum of Gcdh−/− mice without
affecting neuronal survival or inducing systemic or

Fig. 1 Striatal myelinated areas in
WTand Gcdh−/−mice along age.
a Sudan III histochemistry
showing no significant
differences in the general
appearance of striatal myelin in
30-day-old animals immediately
after weaning. Insets show the
general appearance of the whole
striatum in WT and Gcdh−/−
mice. Calibration bar = 100 μm. b
Quantitation of total striatal
myelinated areas after feeding
WT and Gcdh−/− mice with ND,
indicating a significant decrease
in 90-day-old Gcdh−/− animals.
As expected, with age, WT mice
showed a tendency to increase
myelinated areas. Data are the
media ± SD of results obtained in
three independent experiments
with 3–5 animals per condition.
(*) means statistical significant
difference at p < 0.05
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neurological alterations. The abnormalities observed in Gcdh
−/− animals fed with high Lys exceeded in much those shown
in age-matched Gcdh−/−mice fed with a normal diet. As high
Lys diet contains approximately threefold levels of Lys with
the same amount of protein, the injuring myelin effects found
in Gcdh−/− mice can be directly attributed to Lys or more

likely, to the accumulation of the Lys- by-products, glutaric
acid, or/and 3-hydroxyglutaric acid.

In our experimental model, 2.8% Lys intake was sufficient
to accelerate myelin damage in Gcdh−/−micewithout causing
significant cell death. Lys levels in dietary chow were lower
than those used by Zinnanti et al. [6], which caused a three-

Fig. 2 Sudan III signal in the
striatum of WT and Gcdh−/−
mice upon 2.8% Lys treatment. a
Light microscopy images of
Sudan III histochemistry of
transverse brain sections
evidencing that at 30 and 60 days
of Lys diet, myelin in Gcdh−/−
mice show significant vacuolation
(white arrows). Insets show
representative pictures of the
whole striatum of each
experimental condition
evidencing that the typical striatal
architecture was preserved in
spite of myelin vacuolation in
Gcdh−/− mice upon Lys diet.
Magnification is × 40 for the full
pictures and × 4 for insets,
respectively. Calibration bars =
100 μm. b Total area of striatal
myelin in WT (white columns)
and Gcdh−/− mice (black
columns) fed with 2.8% Lys
chow. Note that Lys diet
accelerated loss of myelinated
areas in Gcdh−/−mice. c Ratio of
myelin loss in WT and Gcdh−/−
mice due to dietary Lys. Data are
the media ± SD of results
obtained in three independent
experiments with 3–5 animals per
condition. (*) means statistical
difference between Gcdh−/− and
WT animals of the same age fed
with 2.8% Lys and (#) between
Gcdh−/− mice fed with 2.8% Lys
and those fed with normal chow
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and twofold increase in brain Lys- and glutaric acid concen-
trations, respectively, 48 h after diet start and intermediate
between the 1.7 and 4.7% used by Sauer et al. [13]. The age
of animals at the start of 2.8% Lys diet (30 days old) was
chosen due to previous reports showing severe toxic effects
of Lys overload during early post-natal development to Gcdh
−/− mice [14, 24, 25] together with the time-course of striatal
myelination in rodents [26]. Duration of the treatment covered
the experimental periods reported on acute high Lys intake [6,
12], medium-term treatment (2 weeks, [13]), and chronic Lys
feeding (45 days, [27]), thus likely reproducing pathological
conditions observed in adult onset GA-I.

The most important signs of striatal myelin injury in
Gcdh−/− mice fed with 2.8% Lys include decreased mye-
linated areas associated with abnormal vacuolation of ax-
onal bundles, resembling the white changes with myelin
splitting observed in the neuropathological findings of
GA-1 patients [28, 29]. In this sense, vacuolation is highly
suggestive of direct damage to myelin sheath as previously
shown in some genetic diseases such as Canavan’s disease,
which is also related to metabolic insult [30]. While myelin
histopathological alterations have been previously reported
in older Gcdh−/− mice fed with normal diet [10, 11], the
long-lasting Lys intake seems to accelerate myelin damage.

Fig. 3 Alterations in striatal
myelin of Gcdh−/− but not in WT
mice upon sustained 2.8% Lys
diet. a FluoroMyelin Green
histochemistry evidencing the
presence of abundant vacuoles
that appear as black holes into the
myelinated striatal bundles (white
arrows) upon feeding Gcdh−/−
animals with 2.8% Lys. Inset
shows FluoroMyelin signal in
animals of the same age submitted
to ND. Under this treatment, only
90-day-old Gcdh−/− mice
showed spare vacuolation (white
arrow into the inset). b MBP
immunoreactivity in 90-day-old
WT and Gcdh−/− mice fed with
2.8% Lys. Note that MBP signal
appears disrupted in areas of
vacuolated myelin in Gcdh−/−
mice and looked normal in WT
animals. Calibration bar = 50 μm
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Interestingly, Harting et al. [31] correlated long-lasting el-
evation of GA and 3-OHGA to intramyelinic edema lead-
ing to myelin splitting in late onset GA-1 patients. These

authors proposed that sustained levels of GA-1 metabolites
promote a reduced flux through the citric acid cycle [32],
decreasing the uptake of anaplerotic substrates [33], and
finally leading to low ATP generation that impedes normal
Na+/K + -ATPase functioning. Decrease of this activity de-
regulate the K+ siphoning system with consequent accu-
mulation of paranodal K+ leading to myelin edema.

High Lys diet also caused a significant decrease in MBP
immunoreactivity from striatal axonal bundles in 90-day old
Gchd−/− mice, further confirming myelin vulnerability to
sustained accumulation of GA-I metabolites produced by con-
tinuous feeding with 2.8% Lys diet. MBPs are integral myelin
components that contribute to myelin stability and integrity
[34, 35], playing a role in OL differentiation [36], cytoskele-
ton assembly, mediation of signaling pathways, and signal
transduction in OLs and myelin [34]. They also contribute to
the maintenance of calcium and cell homeostasis [35], thus
being a sensitive marker of OL function and myelination
status.

A minor density of APC (CC-1)-positive mature OLs was
also relevant in Gcdh−/− mice fed with 2.8% Lys, suggesting
that OLs are vulnerable to GA-I metabolites formed from
defective Lys metabolism in Gcdh−/− mice. Such a loss of
APC (CC-1) positive OLs could account, at least partially,
for the decreased myelinated areas, since APC (CC-1) is a
protein that regulates the adhesive properties of OLs [37]
and myelin formation. APC also seems to participate in the
demyelination process [38] and altered communication be-
tween axons.Moreover, the fewOLs that preserve the positive
signal to APC (CC-1) displayed significant body swelling and
expressed increased levels of GRP78/BiP, suggesting that OLs
were undergoing cytopathology and ER stress as described
previously [17, 30]. Of note, GRP78/BiP protein is a marker
of ER stress, mediating the unfolded protein response (UPR)
induced by unfolded/misfolded proteins while dissociating
fromER stress sensors [22, 39]. Becausemyelination involves
a high demand on the protein synthesis machinery [26], it may
elicit a deleterious UPR response further increasing OL vul-
nerability and myelin defects. In this regard, ER stress is also
involved in other myelopathies related to perturbation of the
OL protein secretory pathway such as VanishingWhiteMatter
disease, Pelizaeus-Merzbacher disease, and multiple sclerosis
[22, 30, 40]. Therefore, we propose ER stress as an underlying
mechanism of myelin defects found in Gcdh−/− animals fed
with 2.8% Lys.

In spite of myelin and OL damage, high-Lys diet caused no
apparent change in striatal and cortical neuronal density in
Gcdh−/− mice as denoted by the pan-neuronal marker
NeuN. However, some degree of ER stress in striatal neurons
surrounding the axonal bundles that did not compromise neu-
ronal survival at the experimental times employed was evi-
denced by increased GRP78/BiP signals. Absence of signifi-
cant neuronal death is in accordance with previous reports

Fig. 4 Assessment of vacuolation in striatal myelin of animals fed with
ND or 2.8% Lys diet. a A representative image of many vacuoles (white
arrows) found in the striatal myelinated axonal bundles of 60-day-old
Gcdh−/− mice fed with 2.8% Lys during 30 days. Note that at light
microscopy, vacuoles appear as pale holes that are bigger than cells that
are negatively stained with Sudan III (black arrows). Calibration bar =
50 μm. b Number of vacuoles inWTand Gcdh−/−mice submitted to ND
or 2.8% Lys diet showing a dramatic increase in Gcdh−/− mice when
compared to age-matched WT animals fed with the same chow (*) or to
Gcdh−/− mice fed with ND (or to Gcdh−/− mice fed with ND (#). c
Percentage of vacuolated axonal bundles related to total bundles in WT
and Gcdh−/− mice along the whole period of dieting with ND or 2.8%
Lys. Black arrow indicates the beginning of the diet. Note the significant
increase upon 30 and 60 days of feeding Gcdh−/− mice with 2.8% Lys.
Data are the media ± SD of results from three independent experiments
with 3–5 animals per condition. (*) means statistical difference between
Gcdh−/− andWTanimals of the same age fed with 2.8% Lys whereas (#)
indicates the statistical difference between Gcdh−/− mice fed with 2.8%
Lys and those fed with ND

Mol Neurobiol



showing low neuronal vulnerability in Gcdh−/−mice [10, 11].
Although doses are not similar, it also agrees with the results
showed by Sauer et al. [13] in which variable Lys doses did
not affect neuronal population in Gcdh−/− animals. Therefore,
the present data show evidence that long-term high Lys intake
in Gcdh−/− animals results in a damage restricted to OLs and
white matter with a preserved neuronal survival. These path-
ologic features are comparable to those described in GA-1

late-onset patients in which white matter is selectively affected
but neurological symptoms are negligible [41, 42].

Finally, the underlying mechanisms of selective OL injury
over neurons have not yet been elucidated in humans and in
Gcdh−/− mice. It can be produced due to the higher accumu-
lation of GA-1 metabolites in white mater areas of late onset
GA-1 patients [31] that may cause a selective damage through
one or more of the pathological mechanisms already proposed

Fig. 5 Effects of Lys diet in
striatal OLs and neurons from
WT and Gcdh−/− mice. a
Decreased population of APC
(CC-1) positive cells in Gcdh−/−
vs WT mice both fed with 2.8%
Lys (white column) or toGcdh−/−
mice fed with ND. b Striatal
GRP78/BiP signal showing more
positive cells in Gcdh−/− mice
fed with 2.8% Lys. Calibration
bars = 30 (a) and 50 (b) μm,
respectively. c Decreased density
of CC-1 positive OLs upon 30
and 60 days of feeding Gch−/−
mice with 2.8% Lys. d Increases
in GRP78/BiP density of positive
cells determined when comparing
90-day old Gcdh−/− mice fed
with 2.8% Lys (white columns) or
with different diets (black
columns). e Density of striatal
neurons positive to NeuN
discarding significant death at the
end of feeding Gcdh−/− mice
with 2.8%Lys. Data are themedia
± SD of results from three
independent experiments with 3–
5 animals per condition. * and #
mean significant difference at
p < 0.05 between Gcdh−/− and
WT animals of the same age fed
with 2.8% Lys and between Gcdh
−/− mice fed with 2.8% Lys vs
those fed with ND, respectively
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in GA-1 [1, 2, 14, 27]. In fact, the combination of a complex
differentiation program, very high metabolism, high intra-
cellular iron, low glutathione concentrations together with
functional NMDA and P2X7 ATP receptors, makes OLs
particularly vulnerable to multiple pathomechanisms like
ER stress, oxidative damage, excitotoxic injury, or mito-
chondrial dysfunction [22, 26, 30, 43]. Moreover, oxida-
tive damage can be amplified not only by the iron Fenton
reaction but also by the sphingomyelinase/ceramide path-
way that is very important because ceramide is a major
lipid component of myelin [43].

In summary, although we cannot at this point clearly deter-
mine the major mechanism (s) leading to the alterations ob-
served in this work, we propose that our present model of
moderately high Lys intake may be important to delineate
the mechanisms underlying the selective damage of glial cells
over neurons in Gcdh−/−mice and the progressive white mat-
ter defects in GA-I.
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