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Abstract This review focuses on the pathophysiology of
organic acidurias (OADs), in particular, OADs caused by
deficient amino acid metabolism. OADs are termed classical
if patients present with acute metabolic decompensation and
multiorgan dysfunction or cerebral if patients predominantly
present with neurological symptoms but without metabolic
crises. In both groups, however, the brain is the major target.
The high energy demand of the brain, the gate-keeping
function of the blood–brain barrier, a high lipid content,
vulnerable neuronal subpopulations, and glutamatergic neu-
rotransmission all make the brain particularly vulnerable
against mitochondrial dysfunction, oxidative stress, and
excitotoxicity. In fact, toxic metabolites in OADs are
thought to cause secondary impairment of energy metabo-
lism; some of these toxic metabolites are trapped in the
brain. In contrast to cerebral OADs, patients with classical
OADs have an increased risk of multiorgan dysfunction.
The lack of the anaplerotic propionate pathway, synergistic
inhibition of energy metabolism by toxic metabolites, and
multiple oxidative phosphorylation (OXPHOS) deficiency
may best explain the involvement of organs with a high
energy demand. Intriguingly, late-onset organ dysfunction
may manifest even under metabolically stable conditions.
This might be explained by chronic mitochondrial DNA de-
pletion, increased production of reactive oxygen species, and
altered gene expression due to histone modification. In con-
clusion, pathomechanisms underlying the acute disease man-
ifestation in OADs, with a particular focus on the brain, are
partially understood. More work is required to predict the risk

and to elucidate the mechanism of late-onset organ dysfunc-
tion, extracerebral disease manifestation, and tumorigenesis.

Abbreviations
BBB Blood–brain barrier
mtDNA Mitochondrial DNA
OAD(s) organic aciduria(s)
ROS Reactive oxygen species
TCA Tricarboxylic acid cycle

Introduction

Definitive breakdown of many amino acids occurs mostly
intramitochondrially through degradation of coenzyme A
(CoA)-activated carbonic acids, the so-called acyl-CoA com-
pounds. Inherited enzymatic deficiencies in these catabolic
pathways result in the accumulation of mono-, di-, or tricar-
boxylic acids if enzymatic defects are located in distal steps.
These metabolites have been termed organic acids, and ac-
cordingly, inherited disorders with accumulation of these me-
tabolites are called organic acidurias (OADs). These non-
amino-organic acids are not detectable by amino acid analysis
and, as a consequence, OADs were discovered after the intro-
duction of gas-chromatography techniques. Thus, the current
terminology regarding OADs is not based on pathophysiolog-
ical differences but simply reflects the analytical approach.
OADs therefore comprise a heterogeneous group of inherited
deficiencies (Hoffmann and Kölker 2010; Hoffmann and
Kölker 2011). This review mostly focuses on OADs caused
by inherited disorders of amino acid metabolism.

Clinical presentation

Based on recent knowledge, it seems impossible to correctly
address the time point when the clinical presentation of
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patients with OADs starts. Although most studies have
focused on the postnatal clinical phenotype, evidence is
increasing that substantial metabolic perturbations may al-
ready occur in utero. These perturbations may affect fetal
intrauterine development and result in frontal bossing,
widened nasal bridge, epicanthal folds, a long philtrum,
and inverted nipples of newborns with propionic and
methylmalonic aciduria (Nyhan et al. 2005a; Nyhan et
al. 2005b). Furthermore, temporal hypoplasia, immature
gyral pattern, and delayed myelination are thought to
reflect (reversible) intrauterine developmental delay in
patients with glutaric aciduria type I (Harting et al.
2009). Much more work is required to understand the
underlying mechanisms and long-term consequences of
these abnormalities.

Two groups of OADs, classical and cerebral, have been
delineated based on postnatal clinical presentation. Patients
with classical OADs, such as propionic and methylmalonic
aciduria, often present in the newborn period or in infancy
after a short symptom-free interval of days or weeks, with
acute sepsis-like metabolic decompensation, including meta-
bolic acidosis, keto- and lactic acidosis, and hyperammonemia
(Hörster et al. 2007; Hörster et al. 2009; Pena et al. 2011).
Such metabolic crises can occur at any age and are usually
precipitated by catabolism and inappropriately high protein
intake; the risk of developing metabolic crises decreases with
age. During metabolic decompensations, patients with
classical OADs are at risk of developing irreversible, life-
threatening organ damage. The most vulnerable organ is the
brain. Brain edema and acute injury of basal ganglia (so-called
metabolic stroke) are frequent manifestations and result in
motor and mental retardation, movement disorders, and epi-
lepsy. However, multiorgan failure with acute hepatic failure,
(dilatative) cardiomyopathy and dysrhythmias, acute renal
failure, and pancreatitis may accompany acute brain injury
and may result in long-term organ dysfunction (Hoffmann and
Kölker 2010; Hörster et al. 2007; O’Shea et al. 2012; Pena et
al. 2011). Growing evidence, however, points to chronic
deterioration of organ function (De Keyzer et al. 2009;
Komatsuzaki et al. 2012; Marquard et al. 2011; Prada et al.
2011; Romano et al. 2010; Traber et al. 2011). These compli-
cations may occur even in patients who are apparently meta-
bolically stable.

In contrast to classical OADs, patients with cerebral
OADs present with predominant neurological symptoms,
which usually develop in the absence of severe metabolic
decompensation (Heringer et al. 2010; Kölker et al. 2006a, b;
Kranendijk et al. 2012a, b Pearl et al. 2003; Steenweg et al.
2010). Neurological symptoms may manifest acutely, such
as in glutaric aciduria type I (Harting et al. 2009; Kölker et
al. 2006a, b), or may slowly progress after a variable
symptom-free period, for example, in L-2-hydroxyglutaric
aciduria (Steenweg et al. 2010; Topcu et al. 2005) or

late-onset glutaric aciduria type I (Külkens et al. 2005).
Neurological symptoms are overlapping in individual cere-
bral OADs and may range from retarded motor, mental, and
speech development; movement disorders (e.g. dystonia,
chorea, ataxia, spasticity); optic nerve atrophy; and muscu-
lar hypo- or hypertonia to epilepsy (Harting et al. 2009;
Kranendijk et al. 2012a, b; Kyllerman et al. 2004; Pearl et
al. 2003; Steenweg et al. 2010; Topcu et al. 2005).
Macrocephaly is frequently found in glutaric aciduria type
I, D-2-hydroxyglutaric aciduria, and is most pronounced in
Canavan disease. Magnetic resonance imaging (MRI)
studies may detect characteristic patterns, such as progres-
sive loss of arcuate fibers combined with progressive cere-
bellar atrophy and signal changes in globus pallidus and
dentate nuclei in L-2-hydroxyglutaric aciduria (Steenweg et
al. 2009); temporal atrophy; dilated Sylvian fissures and
external cerebrospinal fluid (CSF) spaces in combination
with T2 hyperintensities; and later on, atrophy in putamen,
caudate, and globus pallidus, as well as age-dependent T2
hyperintensity in (periventricular) white matter in glutaric
aciduria type I (Harting et al. 2009; Neumaier-Probst
et al. 2004).

To better understand the natural history and long-term
outcome in OAD patients and other intoxication-type met-
abolic diseases, we began the E-IMD (European Registry
and Network for Intoxication-type Metabolic Disease; URL:
www.e-imd.org), a European Union (EU)-funded project,
in 2011. One of the major tasks of this project is the
establishment of a web-based patient registry (URL: https://
www.eimd-registry.org). At present, more than 520 patients
have been registered.

The brain as the major target

Despite the etiological and clinical heterogeneity of OADs,
the brain is the major target. What can we learn from the
selective vulnerability of the brain with regard to underlying
pathomechanisms?

There are several aspects of brain metabolism that
include a specific risk for injury:

1. The brain requires about 20 % of the total daily
glucose and oxygen demand (in adults) (Sokoloff
1960). In infants, and in particular during the brain
growth spurt, the cerebral energy demand is even
higher.

2. Neurons and astrocytes form a metabolic unit in
which three distinct pathways have been delineated
(Fig. 1): (a) the glutamate/glutamine cycle (Bak et
al. 2006), (b) the lactate shuttle (Pellerin and
Magistretti 2012), and (c) the dicarboxylic acid shuttle
(Schousboe et al. 1997). Disruption of these pathways
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may lead to astrocytic dysfunction and neuronal cell
death.

3. The blood–brain barrier (BBB) strongly limits the
paracellular transport of hydrophilic compounds, which
can only pass this barrier if specific transporters are
expressed (Ohtsuki 2004; Pardridge 1998). Transport
of glucose, amino acids, and monocarboxylic acids is
highly effective, whereas transport of other hydrophilic
compounds such as creatine or dicarboxylic acids is
strongly limited (Braissant 2012; Sauer et al. 2010a, b).

4. Glutamate is the major excitatory neurotransmitter of
the human brain, and glutamatergic neurons are
major consumers of brain energy. Increased glutamate

concentrations in the synaptic cleft, however, facili-
tate overactivation of postsynaptic neurons, which in
turn activates a neurodegenerative process called
excitotoxicity (Rothman and Olney 1995). Some neu-
ronal cell populations, such as striatal medium spiny
neurons, are highly susceptible to excitotoxicity
(Mitchell et al. 1999).

5. The brain has a high fat content and active lipid
metabolism, which is particularly required for synthe-
sis and maintenance of myelin. This lipid-rich envi-
ronment and oligodendrocytes are highly susceptible
to damage caused by reactive oxygen species (ROS)
(Dewar et al. 2003).

Fig 1 Proposed pathomechanism of glutaric aciduria type I. Three
distinct pathways have been delineated that form the basis of
bioenergetical coupling between astrocytes and neurons and between
excitatory glutamatergic signalling, glucose homeostasis, and
autoregulation of cerebral perfusion, i.e. the glutamate (Glu)/glutamine
(Gln) cycle, the lactate (Lac) shuttle, and the dicarboxylic acid
(DCA) shuttle. In glutaric aciduria type I, entrapment of dicarboxylic
metabolites—glutaryl-coenzyme A (CoA), glutaric acid (GA), and 3-
hydroxyglutaric acid (3-OH-GA)—in the brain compartment are though
to occur as a consequence of strongly limited efflux transport of these
metabolites across the blood–brain (BBB). Glutaryl-CoA inhibits the 2-
oxoglutarate dehydrogenase of the tricarboxylic acid (TCA) cycle in
neurons, whereas GA and—less pronounced—3-OH-GA inhibit the
anaplerotic dicarboxylic acid (DCA) shuttle between astrocytes and
neurons. Bioenergetic impairment may be further aggravated by

hemodynamic alterations and during catabolism. Activation of energy-
demanding glutamatergic signalling by 3-hydroxyglutarate might result
in overexcitation of bioenergetically impaired postsynaptic neurons. In-
hibitory actions are visualized as a red cross. Ace-CoA acetyl coenzyme
A, Arg L-arginine, ASL argininosuccinate lyase, ASS argininosuccinate
synthetase, cGMP cyclic guanosine monophosphate, Cit L-citrulline,
EAAT excitatory amino acids transporters 1-3, GABA gamma-
aminobutyric acid, GAD glutamate decarboxylase, GLDH glutamate
dehydrogenase, Gluc glucose, GLUT1 glucose transporter 1, Gly L-
glycine, MCT monocarboxylate transporter, GS glutamine synthetase,
NaC sodium-dependent dicarboxylic acid transporter, NMDA-R N-
methyl-D-aspartate receptor, nNOS neuronal nitric oxide synthase, PAG
phosphate-activated glutaminase, PC pyruvate carboxylase, PDHc
pyruvate dehydrogenase complex, Pyr pyruvate, TCA tricarboxylic acid,
OAA oxaloacetate
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From neurotoxic metabolites to disease manifestation

Pathologic metabolites that accumulate in patients with
OADs are proposed to act as neurotoxins in that they:

1. Inhibit specific enzymes of brain-energy metabolism
(Morath et al. 2008; Sauer et al. 2005; Schwab et al.
2006)

2. Impair metabolic coupling between astrocytes and neu-
rons (Lamp et al. 2011; Yodoya 2006)

3. Stimulate excitotoxic pathways (Kölker et al. 2002;
Kölker et al. 2004)

4. Interfere with autoregulation of cerebral blood flow
(Strauss et al. 2010)

5. Stimulate ROS production (Kölker et al. 2004; Wajner
and Goodmann 2011).

These actions are mostly based on structural similarities
between accumulating pathologic metabolites and natural sub-
strates. For example, glutaryl-CoA inhibits 2-oxoglutarate
dehydrogenase complex in analogy to succinyl-CoA (Sauer
et al. 2005), propionyl-CoA inhibits pyruvate dehydrogenase
complex in analogy to acetyl-CoA (Schwab et al. 2006), and
glutarate and 3-hydroxyglutarate compete with dicarboxylic
TCA cycle intermediates such as succinate for transport across
sodium-dependent dicarboxylic acid transporters (Lamp et al.
2011; Yodoya 2006). Figure 1 summarizes the proposed
pathomechanism of glutaric aciduria type I.

Although pathologic metabolites have a lower affinity to
these target enzymes and transporters than their natural sub-
strates, negative effects will become prominent at high me-
tabolite concentrations, particularly during catabolism or
following high protein intake. These observations led to the
formulation of the so-called toxic metabolite hypothesis and
coenzyme A sequestration, toxicity, and redistribution
(CASTOR) hypothesis (Mitchell et al. 2008). The latter hy-
pothesis is a restatement of findings and ideas from previous
studies dating back to the late 1960s (Oberholzer et al. 1967).
Intramitochondrial accumulation of toxic acyl-CoA esters is
facilitated by the fact that acyl-CoA esters do not cross bio-
logical membranes. Therefore, the main action of acyl-CoA
esters is primarily intramitochondrial. Intramitochondrial con-
centrations of these toxic metabolites cannot be precisely
predicted based on the quantification of corresponding organ-
ic acids in blood and urine. This is a significant limitation for
biochemical therapy monitoring. Furthermore, intracerebral
accumulation of dicarboxylic metabolites is facilitated by the
naturally occurring lack of effective efflux transport across the
BBB for dicarboxylic compounds (Hassel et al. 2002; Sauer et
al. 2006; Sauer et al. 2010a, b). Therefore, it has been hypoth-
esized (trapping hypothesis) that the physiologic function of
the BBB relevantly contributes to the manifestation of neuro-
logical phenotype in these OADs that produce putatively toxic
dicarboxylic acids (Kölker et al. 2006a, b). Again, plasma,

urine, and CSF analysis for these metabolites do not predict
the intracellular concentration in the brain. In summary,
evidence is increasing that transport of putatively toxic com-
pounds across biological membranes and thus compartmenta-
tion is important for understanding neuropathology and that
determination of metabolite concentrations in body fluids is
not reliable to predict the long-term neurological outcome.

Therapeutic concepts based on pathophysiologic
considerations

Current therapeutic concepts for OADs primarily aim to
lower the intracellular concentration of toxic metabolites
and prevent sequestration of free CoA and secondary deple-
tion of carnitine (Kölker et al. 2011; Sutton et al. 2012). This
is thought to be achieved by limiting the dietary intake of
the amino acid precursor, carnitine supplementation, and
cofactor application (in cofactor-responsible patients and
diseases) for metabolic maintenance treatment as well as
transient cessation of protein intake, high-energy intake
using carbohydrates, rehydration, forced diuresis, urine
alkalization, and extracorporeal detoxification (in severely
decompensated patients with classical OADs) for metabolic
emergency treatment (Kölker et al. 2011; Sutton et al. 2012).
However, the biochemical proof of these concepts for most
OADs was usually based on the analysis of toxic metabolites
in body fluids instead on intracellular studies. This signifi-
cantly hampers our recent understanding, and more animal
and postmortem studies are required. At present, the thera-
peutic concepts described above have been most profoundly
studied for glutaric aciduria type I using Gcdh-deficient mice,
an animal model with complete loss of glutaryl-CoA dehy-
drogenase activity (Koeller et al. 2002). Intracerebral concen-
trations of glutaric and 3-hydroxyglutaric acid were 100–
1,000 fold higher than those found in plasma (Sauer et al.
2006) due to intracerebral production and the lack of effective
transport of these dicarboxylic acids across the BBB
(Sauer et al. 2010a, b). The concentration of glutaric and—
less pronounced—3-hydroxyglutaric acid in the brain com-
partment was directly influenced by the amount of dietary
intake of L-lysine, the major amino acid precursor of these
metabolites (Sauer et al. 2011; Zinnanti et al. 2007). In anal-
ogy to low lysine diet, high energy intake using glucose
reduced the intracerebral concentration of glutaric acid,
whereas carnitine increased the production of nontoxic
glutarylcarnitine but had no significant effect on cerebral
glutaric acid concentration (Sauer et al. 2011; Zinnanti et al.
2007). In addition to this, new concepts exploiting the
physiological function of the BBB have been tested.
Application of arginine and homoarginine—which both com-
pete with lysine for transport across biological barriers, such
as at cationic amino acid 1 transporter at the BBB—was
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shown to reduce cerebral glutaric acid concentration and to
amplify the therapeutic effect of low lysine diet in mice (Sauer
et al. 2011; Zinnanti et al. 2007). Complementary dietary
treatment using arginine-fortified, lysine-free amino acid sup-
plements for patients with glutaric aciduria type I is currently
under investigation, with promising first results (Heringer et
al. 2010; Kölker et al. 2012; Strauss et al. 2011). Alternative
therapeutic strategies, such as fibrate-induced modification of
the pipecolate pathway of lysine degradation; or pharma-
cological inhibition of enzymes, such as the DHTKD1-
containing 2-oxoglutarate dehydrogenase-like complex
located proximal to glutaryl-CoA dehydrogenase within the
lysine degradation pathway, are of theoretical interest but
require further experimental confirmation (Danhauser et al.
2012; Sauer et al. 2011). The development of anaplerotic
therapeutic strategies for the brain is significantly ham-
pered by the lack of influx transport for dicarboxylic TCA
cycle intermediates across the BBB (Hassel et al. 2002),
whereas glucose and monocarboxylic energy substrates
can easily pass this barrier (Kossoff et al. 2009; Segel et
al. 2011). Long-term correction of the (intracerebral) bio-
chemical phenotype for patients with OADs is an impor-
tant future research goal and might be achieved by gene
therapy (Chandler and Venditti 2012), stem cell therapy,
intrathecal enzyme replacement, and chaperone treatment.
However, much more work is required to understand the
safety and efficacy of such concepts.

Extracerebral disease manifestation in organic acidurias
affecting propionate metabolism

Extracerebral organ manifestation is a rare finding in cere-
bral OADs, such as cardiomyopathy in D-2-hydroxyglutaric
aciduria type 2 (Kranendijk et al. 2012a, b). In contrast,
patients with propionic and methylmalonic aciduria have
an increased risk of multiorgan involvement (Hörster et al.
2007; Pena et al. 2012). This may manifest acutely during
metabolic decompensation or chronically—even in meta-
bolically stable patients. The clinical spectrum of organ
dysfunction is variable, including chronic renal failure,
(dilatative) cardiomyopathy, arrhythmia, pancreatitis, pan-
cytopenia (or anemia, neutropenia, and thrombocytopenia),
and premature ovarian failure (De Keyzer et al. 2009;
Komatsuzaki et al. 2012; Marquard et al. 2011; Pena et al.
2012; Romano et al. 2010). The following disease-
causing mechanisms have been proposed for classical OADs
(Fig. 2).

Lack of anaplerotic propionate pathway

The primary enzymatic defect in patients with propionic and
methylmalonic aciduria is located in the final steps of

propionate metabolism. Via this anaplerotic pathway,
succinyl-CoA is fuelled into the TCA cycle, and it is assumed
that up to 7–8 % of total adenosine triphosphatase (ATP) can
be produced by this (Brunengraber and Roe 2006). The heart
is thought to particulary rely on propionate as an anaplerotic
metabolite. A protective effect of propionylcarnitine on
energy-linked processes in ischemic hearts has been shown
(Di Lisa et al. 1994; Sumegi et al. 1995).

Synergistic effects of toxic metabolites

The biological effect of the inherited deficiency of the
anaplerotic propionate metabolism is aggravated by syner-
gistic secondary effects of accumulating toxic metabolites
on energy metabolism (Morath et al. 2008). The TCA cycle
flux is impaired by 2-methylcitrate-induced inhibition of
citrate synthase, aconitase and isocitrate dehydrogenase
(Cheema-Dhadli et al. 1975), propionyl-CoA-induced inhi-
bition of succinate-CoA ligase (Brock and Buckel 2004),
and methylmalonate-induced inhibition of mitochondrial
succinate uptake (Mirandola et al. 2008; Okun et al. 2002;
Kölker et al. 2003). Propionyl-CoA also inhibits pyruvate
dehydrogenase complex (Brock and Buckel 2004; Schwab
et al. 2006), ureagenesis via N-acetyl-CoA synthase (Coude
et al. 1979), and the bc1 complex (Sauer et al. 2008). This
may very well explain the acute and severe clinical presen-
tation of patients with propionic and methylmalonic aciduria
during metabolic decompensation and their recovery if
anabolism is achieved and the concentration of toxic metab-
olites is reduced.

Sustained mitochondrial dysfunction and multiple
OXPHOS deficiency

The concept of synergistic inhibition does not adequately
explain the intriguing observation of late-onset multiple
organ dysfunction in propionic and methylmalonic aciduria.
This points to mechanisms that are more sustained than
acute inhibition of enzymes and transporters. This notion
is supported by the finding of multiple OXPHOS deficien-
cies, in particular, deficiency of bc1 complex and cyto-
chrome c oxidase in liver, skeletal muscle, heart muscle,
and kidney of patients with propionic and methylmalonic
aciduria (Chandler et al. 2009; De Keyzer et al. 2009;
Hayasaka et al. 1982; Schwab et al. 2006). Similar findings,
with most pronounced deficiency of cytochrome c, were
demonstrated in Mut-/- mice (Chandler et al. 2009) and in
a hydroxycobalamin[c-lactam]-induced rat model of
methylmalonic aciduria (Krähenbühl et al. 1991). One pos-
sible explanation for this is mitochondrial DNA (mtDNA)
depletion, which was shown in two studies (De Keyzer et al.
2009; Schwab et al. 2006) but was not confirmed by another
(Chandler et al. 2009). Chronic mtDNA depletion would

J Inherit Metab Dis (2013) 36:635–644 639



result in reduced expression of mitochondrial nicotinamide
adenine dinucleotide (reduced) NADH oxidoreductase, bc1
complex, and cytochrome c oxidase. Notably, propionyl-
CoA inhibits succinate-CoA ligase (Brock and Buckel
2004). Inherited deficiency of this enzyme due to SUCLA2
and SUCLG1 gene mutations causes mtDNA depletion
(Elpeleg et al. 2005; Ostergaard et al. 2007). Whether
propionyl-induced inhibition of succinate-CoA ligase has
the same effect on mtDNA as the mutated enzyme is not
yet known.

Mitochondrial dysfunction was also associated with the
formation of megamitochondria in liver extracts of Mut-/-

mice and mut0 patients. Such megamitochondria properly
arise by a combination of fusion and growth of mitochon-
dria, and their formation can be induced by pharmacologi-
cal, dietary, and toxicological means (Hoppel et al. 2009). In

Mut-/- mice, the formation of megamitochondria and
mitochondrial dysfunction occurred in a tissue-specific and
age-dependent fashion in liver, pancreas, and proximal tu-
bules (Chandler et al. 2009). Along with the development of
megamitochondria, other dysmorphic changes, such as
dysmorphic cristae, intramitochondrial lamellar inclusion
bodies, and a less electron-dense mitochondrial matrix,
appeared. These changes are similar to those found in skel-
etal muscle of patients with propionic aciduria (Schwab et
al. 2006). What drives this process is still unclear. Increased
ROS production, decreased antioxidative defence due to
glutathione depletion, and epigenetic modifications due to
propionyl-CoA-induced histone acetylation and thus
chronic alteration of gene expression are likely candidate
mechanisms (Chandler et al. 2009; Mirandola et al. 2008;
Nguyen et al. 2007; Sauer et al. 2010a, b).

Fig. 2 Proposed pathomechanism of propionic and methylmalonic
aciduria—it is all around the tricarboxylic acid (TCA) cycle. Primary
deficiency in the anaplerotic propionate pathway due to inherited
propionyl-coenzyme A (CoA) carboxylase (PCC) or methylmalonyl-
CoA mutase (MUT), as well as secondary deficiency of pyruvate
dehydrogenase complex (PDHc), citrate synthase (CS), aconitase, 2-
oxoglutarate dehydrogenase complex (OGDHc), succinate-CoA ligase
(ligase), and the mitochondrial succinate transport due to inhibition by
accumulating propionyl-CoA (P-CoA), 2-methylcitrate (2-MCA),
and—in methylmalonic aciduria—methylmalonate (MMA) result in a
synergistic impairment of energy metabolism with a particular focus on
the TCA cycle. Chronic toxic effects, inhibition of succinate-CoA

ligase, and increased reactive oxygen species (ROS) production may
also underlie mitochondrial DNA (mtDNA) depletion, multiple oxida-
tive phosphorylation (OXPHOS) deficiency, and the formation of
megamitochondria, which were found in some patients with propionic
and methylmalonic aciduria. In addition, propionyl-CoA causes
hyperammonemia via inhibition of N-acetylglutamate synthase (not
shown). Inhibitory actions are visualized as a red cross. Dashed lines
indicate multiple enzymatic steps. ALAT alanine aminotransferase,
ASAT, aspartate aminotransferase; ASS, argininosuccinate synthetase;
ASL, argininosuccinate lyase; LDH, lactate dehydrogenase; MDH,
malate dehydrogenase; PC, pyruvate carboxylase; SDH, succinate
dehydrogenase
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Long-term organ failure and tumorigenesis:
at a crossroads of epigenetics

Evidence is increasing that adult patients with propionic and
methylmalonic aciduria may develop late-onset organ man-
ifestation even if they have been considered as metabolically
stable for years. Late-onset organ manifestation includes
optic nerve atrophy, long QT syndrome, dilatative cardio-
myopathy, pancreatitis, chronic renal failure, and premature
ovarian failure, among others (Baumgartner et al. 2007;
Komatsuzaki et al. 2012; Marquard et al. 2011; Pena et al.
2011; Prada et al. 2011; Romano et al. 2010; Williams et al.
2009). The concept of metabolical stability is misleading, as
relevant pathological changes are not reliably predictable
based on biochemical therapy monitoring in blood and
urine. Furthermore, these clinical observations emphasize
the need for establishing new therapeutic concepts and for
reevaluating available strategies, such as early liver trans-
plantation, to protect against these long-term complications
(Chapman et al. 2012; Davison et al. 2011; Kasahara et al.
2012; Meyburg and Hoffmann 2005).

Besides long-term organ dysfunction, the development of
malignant tumors might also occur on the way to adulthood.
Patients with L-2-hydroxyglutaric aciduria have an in-
creased risk of developing malignant (glial) brain tumors
(Moroni et al. 2004). Furthermore, D-2-hydroxyglutaric
aciduria due to somatic mutations in IDH1 and IDH2 genes
encoding for cytosolic/peroxisomal and mitochondrial
nicotinamide adenine dinucleotide phosphate (NADP+)-
dependent isocitrate dehydrogenases 1 and 2 have been
associated with the formation malignant gliomas and acute
myeloid leukemia (Dang et al. 2009, Reitman and Yan
2010). In contrast, malignant brain tumors have rarely been
reported in other OADs (Burlina et al. 2012), if at all.
Finally, massive liver hepatoblastoma has thus far been
described in one patient with methylmalonic aciduria 7
years following renal transplantation and immunosuppres-
sive therapy (Cosson et al. 2008).

Although—except for patients with L-2-hydroxyglutaric
aciduria and somatic gain-of-function mutations in IDH1
and IDH2 genes—the association between OADs and
tumorigenesis is still vague, basic mechanisms have been
elucidated that strongly support the notion of facilitated
tumorigenesis in OADs in general. Specifically, there is a
known link between altered TCA cycle flux and tumorigen-
esis. Isocitrate dehydrogenases 1 and 2 function at an im-
portant crossroads of cellular metabolism. They regulate the
intracellular production of NADPH and 2-oxoglutarate and
thus the reduction of glutathione, cholesterol synthesis,
glucose-stimulated insulin secretion, oxygen-sensing signal
transduction, and histone modification (Reitman and Yan
2010; Xu et al. 2011). Prolyl hydroxylases, which inactivate
hypoxia-inducible factor 1α, require 2-oxoglutarate as a

substrate and are inhibited by succinate, fumarate, and
other dicarboxylic acids, such as D-2-hydroxyglutarate
(Kranendijk et al. 2012a, b; Xu et al. 2011). If intracellular
2-oxoglutarate concentrations decrease or the concentrations
of inhibitory dicarboxylic acids increase, hypoxia-inducible
factor 1α is stabilized. This results in increased glucose
transport, aerobic glycosis (Warburg effect), and angiogen-
esis, which all are known risk factors for tumorigenesis
(Bayley and Devilee 2010; Baysal et al. 2000; Kaelin
2009). In addition, accumulating metabolites in OADs
may alter gene expression by modifying histone acety-
lation (e.g., propionyl-CoA) and methylation (e.g., D-2-
hydroxyglutarate) (Nguyen et al. 2007; Chowdbury et al.
2012; Xu et al. 2011).

In conclusion, current pathophysiologic concepts for
OADs have identified some mechanisms underlying intra-
and extracerebral disease manifestation. Impairment of en-
ergy metabolism due to mitochondrial dysfunction and con-
comitantly increased ROS production caused by various
putative toxins is thought to play a key role. There is also
increasing evidence for chronic organelle and organ dys-
function, which is not yet fully understood. Furthermore,
the risk of developing malignant tumors might be in-
creased in some OADs. Much more work is required to
understand late-onset organ dysfunction and to protect
patients against them.
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